
  

  

Abstract—We develop a novel wearable fetal electrocardiogram 

(fECG) monitoring system consisting of an abdominal patch that 

communicates with a smart device. The system has two main 

components: the fetal patch and the monitoring app. The fetal 

patch has electronics and recording electrodes fabricated on a 

hybrid flexible-rigid platform while the Android app is 

developed for a wide range of applications. The patch collects the 

abdominal ECG (aECG) signals that are sent to the smart device 

app via secure Bluetooth Low Energy (BLE)  communication. 

The app software connects to a cloud server where processing 

and extraction algorithms are executed for real-time fECG 

extraction and fetal heartrate (fHR) calculation from the 

collected raw data. We have validated the algorithms and real-

time data recordings on pregnant subjects yielding promising 

results. Our system has the potential to transform the currently 

used fetal monitoring system to an effective distanced and tele- 

maternity care. 

I. INTRODUCTION 

The infant mortality rate in the United States shows no 

improvement in the care system with 6.20 per 1,000 live births 

in 2004 and 6.23 in 2003 [1]. Fetal heartrate monitoring is an 

essential component of perinatal care by recognizing elements 

that might imperil the life of the fetus and mother. Fetal 

monitoring may help   triage and/or diagnose preterm 

contractions and fetal well-being [2]. While the gold standard 

antenatal cardiotocography (CTG) showed no significant 

difference in identifying perinatal risk compared with no CTG, 

computerized CTG showed a significant reduction in perinatal 

mortality, indicating further deployment of cutting-edge tools 

and advanced analytics may help enhance the outcomes [3]. 

In recent years, home-based devices for fetal monitoring 

have been introduced. These include Doppler-ultrasound fetal 

heart rate (fHR) monitors which require active scanning over 

the abdomen using gel to locate the fetal heart. The 

measurement is especially challenging for non-medical 

persons. Additionally, the Food and Drug Administration 

(FDA) issued a warning in 2014 against the use of such 

ultrasound-based fHR home monitors [4]. Further, it provides 

only fHR, which cannot be used to monitor abnormal 

development of the heart, in contrast to fetal electrocardiogram 
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(fECG), which depicts PQRST features in the signal that helps 

evaluate the functional status of the heart [5]. fECG provides 

vital information about fetal well-being, fetal development, 

and maturity, or non-reassuring fetal status during pregnancy 

and labor [2]. Some home-based fECG systems were 

developed and introduced; nevertheless, they are bulky, costly, 

and intrusive, thus have not been widely used. The abdominal 

ECG (aECG) consists of several bioelectric potentials such as 

maternal heart activity (mECG), fECG, maternal muscle 

activity (mEMG), fetal movement activity, and noise. 

Continuous fECG monitoring has remained a challenging 

problem in the research community  [6].  

In this work, a home-based fetal and maternal monitoring 

system, including a fetal patch, a mobile application, and a 

cloud server is designed and implemented (Fig. 1 (. We 

developed hardware and software components to create a 

remote prenatal care system. The abdominal ECG signals are 

collected by a wearable patch, and then the collected data are 

sent to the Android app via Bluetooth Low Energy (BLE) 

communication. The pre-processing and extraction algorithms 

are performed through the connected cloud server from the app 

to separate the fECG and mECG. Then, fHR calculation is 
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Figure 1. Fetal ECG monitoring patch and system. 
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performed to assess the performance of the device. Finally, the 

fECG and fHR are displayed in real-time on the app. Users 

will be warned to visit the hospital when a critical event, or 

better yet, a pre-critical event, occurs. 

II. METHODS AND IMPLEMENTATION 

A. The fetal patch 

    The patch is made of a flexible-rigid printed circuit board 

with dimensions of 4.5 cm × 9.5 cm. Two wings having 

electrodes measured 10 cm apart are designed with a flexible 

material (highlighted in orange – Fig. 1), which increases the 

contact surface between the electrode and abdominal area. It 

contains two types of electrodes (i.e., Ag/AgCl wet electrode 

and non-contact electrode) for validation and comparison. 

While the wet electrodes can provide high signal to noise ratio 

(SNR) by having the electrolyte gel, it was known to cause 

skin irritation for long-term measurement [7]. Thus, we 

deployed the non-contact electrode (NCE) as an alternative on 

the patch. The dual-channel design is to characterize and 

compare the performance of the contact and non-contact 

approaches. The patch’s circuitry comprises an ADS1299 chip 

(Texas Instrument) with 24-bit analog-to-digital converter 

specifically designed for biomedical signal measurement and 

a system-on-chip nRF82832 (Nordic Semiconductor, 

Trondheim, Norway) powered with Arm Cortex-M4 CPU 

running at 64 MHz. The nRF5282 is used to transmit data from 

ADS1299 to the Android application through BLE. 

B. Fetal ECG Extraction Algorithm 

fECG extraction algorithms can be classified into three 

groups: blind source separation (BSS), template subtraction, 

and filtering techniques. The BSS methods assume that the 

abdominal signal is a mixture of independent signals, 

consisting of fECG, mECG, and noises [8]. In our first-

generation system, we utilized the least-mean square adaptive 

filtering [9]. Further, we implemented the BSS method via the 

independent component analysis (ICA), FastICA and 

RobustICA, and validated and compared them with the online 

data [10]. In our recent report, we implemented and tested 

various techniques, including Extended Kalman Filter (EKF), 

template subtraction (TS), ICA and their combination using 

the PhysioNet 2013 Challenge data bank as well as the data 

with added Gaussian and motion noise, to mimic daily life 

situations with wearable devices [11].  

Among these, EKF is a powerful approach for single-

channel fECG extraction [12]. The celebrated Kalman Filter 

(KF) is an optimal algorithm for estimating parameters of 

linear and Gaussian dynamic models [13]. EKF is used for 

nonlinear problems, which is based on local linearization of 

the nonlinear model by using the Jacobian operator [14]. The 

dynamic model for a discrete nonlinear system is typically 

formulated as follows: 

{
𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑤𝑘, 𝑘)

𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑣𝑘, 𝑘)                                (1) 

where 𝑔 is the observation function that maps state space into 

the observed space    . 𝑓 is the state transition function that 

describes the evaluation of the state variable 𝑥𝑘,  𝑤𝑘, and 𝑣𝑘 

denote the process and observation noises and 𝑦𝑘 is 

observation vector [15]. The linear approximation near a 

desired reference point (𝑥̂𝑘 , 𝑤̂𝑘 , 𝑣̂𝑘) will lead to the following 

linear estimates: 

{
𝑥𝑘+1 ≈ 𝑓(𝑥̂𝑘 , 𝑤̂𝑘, 𝑘) + 𝐴𝑘(𝑥𝑘 − 𝑥̂𝑘) + 𝐹𝑘(𝑤𝑘 − 𝑤̂𝑘)

𝑦𝑘 ≈ 𝑔(𝑥̂𝑘 , 𝑣̂𝑘, 𝑘) + 𝐶𝑘(𝑥𝑘 − 𝑥̂𝑘) + 𝐺𝑘(𝑣𝑘 − 𝑣̂𝑘)
   (2) 

where 

𝐴𝑘 =
𝜕𝑓(𝑥,𝑤̂𝑘,𝑘)

𝜕𝑥
|𝑥 =𝑥̂𝑘           𝐹𝑘 =

𝜕𝑓(𝑥𝑘,𝑤,𝑘)

𝜕𝑤
|𝑤 =𝑤̂𝑘 

𝐶𝑘 =
𝜕𝑔(𝑥,𝑣̂𝑘,𝑘)

𝜕𝑥
|𝑥 =𝑥̂𝑘           𝐺𝑘 =

𝜕𝑔(𝑥𝑘,𝑣,𝑘)

𝜕𝑣
|𝑣 =𝑣̂𝑘 

Here, before running the extraction algorithm, the acquired 

data are filtered to remove the baseline wander and powerline 

interference noise. The baseline wandering is removed by 

using a lowpass filter, and the power-line interference noise is 

suppressed by a notch filter. Then, the EKF algorithm is used 

to estimate the mECG signal, which is used to remove the 

mECG signal by subtracting it from aECG. The residual signal 

consists of fetal ECG and noise. Another EKF is used to filter 

out the fECG from the noise. Finally, the fetal QRS complexes 

(fQRS) are detected by using the Pan-Tompkin algorithm [11, 

12]. 

C. Android Smartphone App Software  

      We developed an Android smartphone application in Java 

that connects to the patch via BLE communication for data 

collection, displaying, and logging. Through BLE protocols, 

the app connects to the fetal patch and reads in multiple data 

channels at a rate of 500 Hz. After accumulating at least 1,000 

data points, the input data are sent to a cloud server to extract 

the fetal and maternal ECG through the algorithm described in 

Section II.A. This would provide sufficient data to detect 

peaks and extract the fECG with higher accuracy. The results 

will start appearing on the application interface after ~10 

seconds of initially starting in the form of dynamic graphs as 

well as numerical values for the fHR. The user can disconnect 

the patch at any time and save the raw data with associated 

time points they are received in the application to a text file 

with a customizable name in the phone’s external storage. The 

results of the algorithm will also be saved in the cloud. The 

user also can load past text files to view the raw data and 

process fECG and fHR. This process is depicted in the flow 

chart in Fig. 2. 

 
 

Figure 2. Android application operation flow chart. 
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III. EXPERIMENTS AND RESULTS 

All experiments comply with protocols approved by the 

Institutional Review Board (IRB) committee at UC Irvine 

(IRB#2020-6342). 

A. Algorithm Validation 

The EKF algorithm described in the previous section is 

implemented on mobile app for real-time fECG extraction 

(Fig. 3). To evaluate the accuracy of the mobile app, we tested 

it with the PhysioNet 2013 Challenge databank which consists 

of a collection of one-minute abdominal ECG recordings, as 

all these data are annotated [16]. To implement the mobile app, 

the MATLAB code must be converted to Java. In this 

conversion, because all functions must be rewritten, the 

application may not have the same accuracy of MATLAB 

code. The mobile app were compared in terms of the F1 score 

and evaluated against MATLAB. F1 score  is accuracy 

measure and can be obtained from the following equation: 

                            
2*TP

F1=
2*TP+FN+FP

                          (2) 

where TP, FP and FN are true positive, false positive and false 

negative in fECG peak detection, respectively.  Table 1 

presents the average F1 score results in the 68 aECG records 

using the mobile app and MATLAB code. It can be seen that 

the mobile app is reliable as the results are comparable to that 

of MATLAB. 

TABLE I.  AVERAGE F1 SCORE (%) WITH MOBILE APP AND MATLAB 

CODE  FOR ALL RECORDS 

 
Table Column Head 

Mobile app MATLAB  

F1 Score 84.8 86.7 

B. Device Validation 

The fetal patch was first validated on a healthy subject in 

different postures (e.g., siting, walking, and standing). Fig. 4 

describes the patch setup and mobile application user 

interface. Specifically, two flexible belts were used to attach 

the patch on abdominal area. The volunteer was asked to 

perform different activities such as sitting on the chair, 

walking slowly, and standing. The mobile application was then 

turned on connecting with the patch. The index graph showed 

the data transmit package, checking if there is any data lost 

during the transmission. The data were then collected in 5 

minutes for each posture. Fig. 5 illustrates the ECG data 

(plotted in the first 20 seconds) from the first experiment. It 

can be seen that the ECG signal in the sitting position is clean 

and more stable than those recorded by standing and walking 

 
Figure 6. Results of fetal ECG extraction by using the Android 

application. (a) recorded data from maternal abdominal; (b) filtered 
data; and (c) Fetal ECG extracted and fetal QRS detected. 

 
Figure 5. ECG signals recorded from the patch: (a) sitting position, (b) 

standing position, (c) walking position. 

 
Figure 3. Results of fetal ECG Extraction by using the Mobile app and 
MATLAB. (a) A signal from PhysioNet 2013 Challenge databank; and 
(b) the fECG signal on Mobile app and MATLAB. 

 
 

Figure 4. The fetal patch setup and experiment. 
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position. Especially, motion artifacts were found in the signal 

with walking position.  

C. Entire System Validation 

The entire system was further validated on 10 pregnant 

women between 28 and 34 weeks of gestation in the UCI 

Medical Center. The patch was embedded inside a maternity 

belt. The pregnant subjects were asked to perform a 

transabdominal ECG recording within 5 minutes. Each subject 

was laid on the chair and the belt with the fetal patch was 

attached on the abdominal area. Fig. 6 illustrates the collected 

ECG and processed fECG of a pregnant woman. The obtained 

ECG was filtered to remove DC noise and interference and 

applied to the fECG extraction algorithm as described in 

Section II.B. As can be seen, our system can successfully 

collect the abdominal ECG and extract the peaks of fECG 

(highlighted in red in Fig. 6c). For this pregnant woman, the 

fHR is measured  at 100 beats per minute which is normal for 

this stage of pregnancy.  

IV. DISCUSSION & CONCLUSION 

  In this paper, we have developed a fetal ECG monitoring 

device and extraction algorithms implemented on an Android 

smartphone which is capable of providing real-time and 

continuous fetal monitoring. We rigorously conducted several 

experiments to validate the operation of all components. The 

Android smartphone application was compared in terms of 

the F1 score and evaluated against offline processing using 

MATLAB. The results indicate that mobile app is reliable on 

its own. The entire system was tested with 10 pregnant 

subjects, demonstrating its feasibility. Specifically, the 

aforementioned device has been successfully applied to 

collect and extract fECG from aECG, and the efficacy of the 

proposed system has been carried out with real-time data 

recordings on pregnant subjects. Our Android application 

provides graphical and numerical information of fECG to 

assess fetal wellbeing. The fHR was calculated, and the fECG 

and fHR were displayed in real-time. Examination of patterns 

and fHR obtained would indicate the need to take the 

appropriate medications during labor. 

Through numerous experiments, and a pilot study with 

pregnant subjects, we notice that electrode placement has a 

significant effect on the fECG signal quality. This was 

anticipated as the fetus location and orientation vary person to 

person and also at different gestational ages. We plan to 

incorporate accelerometric sensors and additional algorithms 

to detect and extract other signals such as uterine contraction 

and fetal movement. Regarding the long-term usage of the 

patch, with the non-contact technology deployed, it would 

bring comfort to users, avoiding unwanted side effects [4] due 

to the use of conventional contact electrodes.  

In the future, we will improve the entire system with more 

miniaturized patches, optimized Android and iOS apps, real-

time and pseudo-real time analytics with cloud computing. 

We will also conduct more experiments on the pregnant 

subjects, including subjects with twins, to validate the system 

and the fECG extraction algorithms.  
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