
  

  

Abstract—Cardiovascular Disease (CVD) is responsible for a 

large part of healthcare costs every year, but susceptibility to it 

is affected by complex biological and physiological variables 

including patients’ genetics and lifestyles. There has not been 

much work to develop a framework that incorporates these 

important and clinically relevant risk factors into a 

comprehensive model for CVD research. Moreover, the data 

labeling required to do so, such as annotating gene functions, is 

an extremely challenging, tedious, and time-consuming process. 

In this work, our goal was to develop and validate a risk factor 

embedding model, which incorporates genotype, phenotype 

without pre-labeled information to identify various risk factors 

of CVD. We hypothesize that (1) the knowledge background that 

does not require data labeling could be gathered from published 

abstract data, (2) the phenotype, genotype risk factors could be 

represented in an embedding vector space. We collected 

1,363,682 published abstracts from PubMed using the keyword 

“heart” and 19,264 human gene names, then trained our model 

using the collected abstracts. We evaluated our CVD risk factor 

identification model using both intrinsic and extrinsic 

evaluations: for the intrinsic evaluation, we examined whether 

or not the captured top-10 words and genes have references 

related to the input query “myocardial infarction”, as one of 

CVDs, and our model correctly identified them. For the extrinsic 

evaluation, we used our model to the dimensionality reduction 

task for classifications, and our method outperformed other 

popular methods. These results show the feasibility of our 

approach for disease-associated risk factors of CVD which 

incorporates genotype, phenotype.  

 Clinical Relevance—Our model provides a comprehensive 

tool to incorporate various risk factors without any a priori data 

labeling knowledge for CVD. Our approach shows a potential to 

provide discovered knowledge that contributes to better 

understanding and treatment of CVD. 

I. INTRODUCTION 

Cardiovascular disease (CVD) is leading to 31% of all 
global deaths in 2016 [1]. CVD results from complex 
deleterious feedback between multiple organs such as kidneys 
and lungs, and the disease is also strongly affected by genetic, 
social, and environmental factors [2]. In the past several 
years, genome-wide association studies (GWAS) and 
electronic health record (EHR) [3, 4] based methods have 
been introduced for risk factor identification in CVD study. 
Since most CVDs are caused by heritable gene components 
[5], several approaches based on GWAS to identify genotype-
phenotype correlation have been developed. However, due to 
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the complexity of CVDs, for example, a single genotype 
associated to CVDs may be involved in a wide range of 
biomarkers, many of which could be found in several diseases, 
as noted by [5] such that some of the genotype-phenotype 
approaches are ineffective for most CVDs. Moreover, data 
labeling tasks such as the functional annotations of genes are 
still challenging to identify the risk factors associated with 
diseases in bioinformatics research [6, 7].  

EHR data provide real-world information about patients’ 
disease data captured in unstructured clinical narratives. The 
EHR also contains diverse conditions of multiple co-morbid 
factors, which are typically not identified in the existing 
classification and phenotyping methods [3, 4]. However, the 
EHR based CVD research works have some limitations such 
as (1) unstructured data management, (2) missing data, (3), 
selection bias (4) limited source ability. The limited source 
access especially interrupts the improvement of CVD risk 
identification research. Recently, Gopalakrishnan et al. [8] 
reported that text mining of the published biomedical 
literature has a potential to provide undiscovered knowledge 
and hidden correlated information for a specific disease. Text 
mining enables extraction of information from entities such 
as gene/proteins and diseases which are often readily 
available in the literature [9]. However, there has not been 
much work to identify CVD risk factors from the literature 
databases. In addition, no there are many studies that have 
incorporated multiple factors (e.g. phenotype, genotype) that 
are known to affect CVD into a comprehensive model [10].  

Embedding model based on a neural network enables 
integration of multi-modalities such as images and audio by 
capturing correlations among these data, due to network’s 
ability to map representations of different data types into a 
numerical vector space [11, 12]. We hypothesize that (1) data 
labeling tasks (e.g., annotations of gene function/clinical 
records) for risk factors could be obtained from published 
abstracts, and (2) the multi-modalities of the phenotype, 
genotype can be represented in an embedding vector space. 
To the best of our knowledge, this is the first work on building 
an embedding model by identifying genotype and phenotype 
associated risk factors from the published abstracts without 
any labeling tasks.   

In this paper, we propose a framework and validation for 
our CVD risk factor embedding model. We collected 
1,363,682 published abstracts using the word “heart” and 
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19,264 human gene names from PubMed. We validated the 
embedding model using intrinsic and extrinsic evaluations. 
For the intrinsic evaluations, we captured CVD-associated 
words and genes using our model and checked whether or not 
the captured words and genes have references related to the 
input queries. The published papers were used as the 
benchmark of the results. For the extrinsic evaluation, we 
validated the model by applying the embedding model for the 
Multi-Ethnic Study of Atherosclerosis (MESA) [13] dataset 
to discriminate between CVD and healthy subjects. 

II. PROPOSED METHOD 

Our method consists of three steps: (a) data collection, (b) 
proposed CVD risk factor embedding model design, and (c) 
model validation. Each of these steps is detailed below. 

A. Data collection 

To train the risk factor embedding model, we collected 
1,363,682 published abstracts (years published were between 
1960s-2020). 1,088,288 of the abstracts were collected using 
the keyword “heart” and 275,394 abstracts were obtained 
using human gene names from 19,264 queries of the PubMed 
database. The gene name lists were obtained using SNP lists 
provided by the dbGaP accession phs000883.v1.p1. The gene 
name extraction from SNP lists and abstract collection were 
implemented using BioPython library with Python.3.7.1. in 
June 2020.  

B. Proposed model structure 

 Our risk factor embedding model is an extension of 
Word2Vec [14], as shown in Fig. 1, to train genomic 
information and risk-associated words. Word2vec is one of 
the well-known models in the Natural Language Processing 
(NLP) tasks, which consists of a neural network with an input 
layer, embedding lookup layer, and output layer. The model 
learns the representation of words in the same sentence or 
documents by considering co-appearances of the words. The 
result of the embedding lookup layer is the distributed 
representation of the input and output words. Thus, the model 
provides embedding vectors which preserve semantic and 
syntactic relationships among vocabularies. 

The CVD risk factor embedding model consists of three 
steps: the Word2Vec structure, and the models shown in Fig. 
1(a), and Fig. 1(b). Word2Vec is designed to train vector sets 
for each unique word, which captures the correlation between 
words. Our proposed structure shown in Fig. 1 trains gene 
vectors by adding gene names into the Word2Vec structure. 

Note that we collected two types of documents depending on 
the abstract search query: word-based (e.g. “heart”) and the 
human gene names-based (19,264 gene names). If we use 
word-based abstracts, our embedding model trains word-only 
results by using Word2Vec with Skip-gram structure. When 
published abstract data from a gene-name-based query are 
provided as training data, the model trains genes and words 
together from the same documents, as depicted in Figs. 1(a)-
(b). The model structures and training process enable vast 
distributed representations of words and genes using 
published abstracts. Therefore, the model does not require any 
knowledge associated with the specific disease. The details of 
Word2Vec are further described in [14]. 

C. Model Validation 

We evaluated the proposed model using both (1) intrinsic 
and (2) extrinsic evaluations [15]. The intrinsic methods 
measure semantic relationships between data points 
represented as embedding vectors to assess the quality of the 
model. This study used the aggregate scores among the sets 
of query terms 𝑐𝑖  and target words/gene names 𝑐𝑗 captured in 

the embedding space as intrinsic evaluation metrics. The 
similarity is formulated as follows.  

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑐𝑖 ,  𝑐𝑗) =
𝑐𝑖

𝑇𝑐𝑗

‖𝑐𝑖 ‖‖𝑐𝑗‖
 

 
(1) 

The similarity metric ranges from -1 to 1, with 0 as the 
least similar and 1 as the most similar among data points. We 
defined words/gene names captured by the proposed model 
with high values (e.g., close to 1) for the risk factors for each 
input query (e.g. heart). The published papers were used as 
the benchmark of the results.  

The extrinsic evaluation used vector embedding as input 
features for supervised learning models. We used the 
proposed model as a dimensionality reduction approach for 
classification tasks to illustrate the quality of the data 
representation. For the classification task, the Multi-Ethnic 
Study of Atherosclerosis (MESA) [13] from BioLINCC was 
selected. The MESA is a prospective cohort study which 
consists of data from 6,814 men and women subjects with 
ages ranging from 45 to 84 years old, members of four 
racial/ethnic groups. We selected 775 phenotype features 
from the baseline examination (2000–2002) and ancillary 
studies for cardiovascular disease (CVD) patient 
classifications. The detail of the attributes is described in [13].  

The proposed dimensionality reduction is used to validate 
the quality of the embedding. The inner-product between two 
independent vectors is a valid measure of similarity [16]. Our 
embedding model contains the distributed representations for 
each word/gene name. The MESA datasets provide names of 
these phenotype features, referred to as variables (e.g. 
hpylori1: Helicobacter pylori antibodies). By using the 
embedding vectors from variables’ names, the inner-product 
can reduce the data dimension by the following procedure: 

𝐼𝑛𝑛𝑒𝑟 𝑃𝑟𝑜𝑑𝑢𝑐𝑡(𝑢,  𝑣) = |𝑢|| 𝑣|𝑐𝑜𝑠𝜃 = 𝑢𝑣𝑇  (2) 

In Eq. (2), 𝑢 is a variables matrix (variables for each subject) 

in the MESA data and 𝑣 is the variable embedding matrix 

using the variable’s name. The variable embedding vectors 

are generated by averaging the embedding vectors of the 

variables’ names if the number of the words in the name is 

   
(a) The step 1 portion 
of the proposed model 

(b) The step 2 portion 
of the proposed model 

Figure 1. The structure of the proposed embedding model 
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two or more.  The variable embedding vectors are normalized 

before the inner-product. In order to compare with the 

proposed work, we examined Uniform Manifold 

Approximation and Projection (UMAP) and Principal 

Component Analysis (PCA). Accuracy, recall, precision, and 

F1 scores were used as the performance metrics. The 

performance metrics were calculated as an average of the five 

results obtained via 5-fold cross-validation. 

III. EXPERIMENT 

This section consists of (a) text data preprocessing, (b) 
MESA data processing, and (c) model training. The details 
are described below. 

A. Text data preprocessing 

 Natural language pre-processing techniques were 
applied for conversion to all lower case (e.g. “Heart” -> 
“heart”); replacing number next ‘-’ as  # (e.g. covid-19 -> 
covid-#); word tokenization; and removal of unwanted words 
such as stop-words (e.g. “are,” “where”), prepositions 
/subordinating conjunctions, determiners, personal 
/possessive pronouns, wh-adverbs (e.g., how, when, where), 
modals, comparative adverbs, superlative adverbs, 
coordinating conjunctions, and the existential there (e.g., 
there is/are). Gene names used as queries for abstract search 
were labeled with capital letters with the “#” symbol 
appended. An example of data preprocessing is shown in 
Table 1. 

 
TABLE I.  AN EXAMPLE OF THE PRE-PROCESSING 

Type An example for gene name and sentence processing 

Original LINC01128 LINC01128 resisted acute myeloid leukemia 

through regulating miR-4260/NR3C2 

Pre-

processed 

#LINC01128 linc# resisted acute myeloid leukemia 

regulating mir-# nr#c# 

 

B. MESA data processing 

 For the binary classification task of CVD vs. non-CVD, 
we combined 19 CVD-related labels as a CVD label. The 19 
events are: Atrial Fibrillation Diagnosis (via ICD9 Code), 
Atrial Fibrillation (Self-Report), Atrial Fibrillation Diagnosis 
(ICD-9 or Self-Report), Myocardial Infarction, Resuscitated 
Cardiac Arrest, Angina Pectoris, Percutaneous 
Transluminal Coronary Angioplasty, Coronary stent or 
Coronary atherectomy, Coronary Bypass Graft, Other 
Revascularization, Congestive Heart Failure, Peripheral 
Vascular Disease, Stroke, Transient Ischemic Attack, 
Death, Coronary Heart Disease-Hard, Coronary Heart 
Disease-All, Cardiovascular Disease-Hard, Cardio-vascular 
Disease-All, Coronary Revascularization.  

We used only 543 attributes among 775 from the MESA 

data, as some of them had missing values that were <5%. 

Thus, 543 attributes from 6,814 subjects were used to classify 

between CVD (2,147 subjects) versus non-CVD (4,667 

subjects).  

C. Model Training 

We trained different models for two tasks: a risk factor 

identification embedding model using abstract documents, 

classification models with the proposed embedding model 

using the MESA dataset for extrinsic evaluation.  

The risk factor embedding model was trained with 
1,363,682 published abstracts, using the structure shown in 
Fig. 2. We used negative sampling of 12, a minimum word 
count of 6, a window size of 2, an epoch of 20, a learning rate 
of 1.0 with a gradient descent optimizer, and a dimension of 
128. The model was trained using Python 3.7 with Tensorflow 
ver. 1.18.3. Our model trained 280,138 unique words and 
19,264 unique gene names.  

For the extrinsic evaluation, two popular machine learning 
algorithms—Random Forest (RF) and Logistic Regression 
(LR)—and a basic deep neural network model (DNN) were 
used as classifiers. We trained each method (RF, LR, and 
DNN) five times with 80% of the data, tested with 10% of the 
data, and validated the model with the remaining 10% of the 
data. All features were standardized before feature selection 
or dimensionality reduction tasks to handle biases towards 
larger feature values. The classification tasks were evaluated 
using stratified 5-fold cross validation. The best RF and LR 
classifiers were selected using a grid search. For the DNN 
model, the best classifier was chosen based on the highest 
accuracy in the validation dataset post-training. For 
determining hyper-parameters with the grid search, an 
estimator of {256, 512}, a max feature of 128, and a max 
depth of {3,5} were used for RF. For LR, C parameter was 
varied {0.01, 0.1, and 1.0}. The DNN classifier with 10 
hidden layers, a learning rate of 0.001, a gradient descent 
optimizer, a batch size of 128, and an epoch of 1,000 were 
used. The machine learning models—RF and LR with a grid 
search—were trained using scikit-learn v. 0.23.2 and the 
DNN model was trained using Tensorflow v. 1.18.3 with 
Python 3.7.  

IV. RESULTS AND DISCUSSION 

A. Results for the Intrinsic Evaluation  

To assess the risk factor embedding model, we used 
“myocardial infarction” as the input query to obtain risk 
factors (associated words and genes). Embedding vectors of 
two words such as “myocardial + infarction” were averaged 
into an embedding vector. The captured words and genes 
were sorted by the highest score based on the cosine similarity 
for the input queries, as shown in Table II.  

 
TABLE II.  THE LIST OF TOP 10 DISEASE ASSOIBED WORDS/GENES 

IDENTIFIED BY OUR MODEL FOR “MYOCARDIAL INFARCTION” 

Word Gene 

mi #PPP6R3[17] 

ami #GNB2[18] 

infarct #HRK[19] 

infarctions #NUP43[20] 

st-elevation #CAPZA3[21] 

infraction #NUFIP1[22] 

non-q-wave #PABPC4[22] 

post-myocardial #BRD2[22] 

stemi #ACADS[22] 

q-wave #WFDC9[23] 

 

To validate the performance of the embedding model for 
the intrinsic evaluation, we checked whether or not the 
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captured genes have references related to the input queries. 
We found that all 10 genes for myocardial infarction have 
associated reference, as shown in Table II. The details of the 
captured genes are described in their references. Our model 
using the query of myocardial infarction provided relevant 
associated terms such as: mi (myocardial infarction), ami 
(acute myocardial infarction), stemi (ST-Elevation 
Myocardial Infarction), and mis (myocardial infarctions) as 
well as ECG-related indicators such as st-elevation, non-q-
wave, and q-wave which suggest current or prior myocardial 
infarction. These results suggest that our embedding model 
provides a good representation of the phenotype and 
genotype.   

B. Results for the Extrinsic Evaluation  

 To validate the quality of the embedding model, we 

conducted CVD classifications using the MESA dataset.  

TABLE III.  THE PERFORMANCE OF DIMENSIONALITY REDUCTION(DR) 

FOR CVD CLASSIFICATION (MESA) 

DR ML Acc. Pre. Re. F1 
Input 

size 

Ave. 

time 

Non-DR 

DNN 0.75 0.70 0.67 0.68 

543 N/A RF 0.76 0.73 0.68 0.70 

LR 0.75 0.71 0.67 0.68 

Proposed 

Work 

DNN 0.73 0.69 0.65 0.66 

128 
0.00 

sec 
RF 0.73 0.69 0.64 0.65 

LR 0.74 0.70 0.65 0.66 

UMAP 

DNN 0.54 0.37 0.50 0.36 

128 
13.68 

sec 
RF 0.32 0.33 0.50 0.25 

LR 0.46 0.23 0.50 0.30 

PCA 

DNN 0.66 0.59 0.57 0.57 

128 
0.16 

sec 
RF 0.60 0.53 0.57 0.50 

LR 0.55 0.27 0.50 0.34 

  

As shown in Table III, our approach outperformed two 
well-known dimensionality reduction methods, UMAP and 
PCA, with much faster execution time (~1,368 times faster). 
Note that the dimensionality reduction task is to validate the 
quality of the embedding models for the phenotype variable 
representations, which preserve the correlations between data 
points. The outstanding performance suggests our embedding 
model provides a superior vector representation for phenotype 
variables. These results shown in Tables II, III provide good 
support for our approach to risk factor identifications of CVD 
using embedding vectors. 

V. CONCLUSION 

We propose a CVD risk factor identification embedding 
approach incorporating phenotype, genotype using published 
abstracts. Our approach was validated using both intrinsic and 
extrinsic evaluations. The model showed accurate risk factor 
identification results and outperformed other dimensionality 
reduction methods for classification tasks. This proposed 
framework is not limited to specific fields. Our approach 
could be applied to a variety of disease data sets. In addition, 
it is easy to build the model in any environment. Many 
information retrieval tasks require expensive computing 
power such as multiple GPUs to address the large number of 
parameters required by other models. However, our model 

was computed on a CPU with 8 cores (Xeon E5-2690 v3, 
@2.60 (GHz)) and the training time took only 26 hours. While 
further improvements are necessary with our approach, the 
proposed risk factor embedding model has the potential to 
provide better understanding and treatment of CVD by 
identifying accurate risk factors of CVD.  
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