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Abstract— Recent studies have attempted to recognize
emotions by extracting features from electroencephalographic
(EEG) signals using either linear and stationary, or linear and
non-stationary transformations. However, as EEG signals are
non-linear and non-stationary, it seems that a non-linear and
non-stationary transformation may be more suitable. Despite
the attractiveness of this hypothesis, until now, little studies
have used such transformation. The current work presents
a comparison between an approach to recognize positive
and negative emotions using a non-linear and non-stationary
transformation (Hilbert-Huang Transformation) with an
approach using linear and non-stationary transformation
(Discrete Wavelet Transform). The two approaches were
compared using 200 EEG signals recorded from 10 subjects.
The comparison indicated that an approach using the Hilbert-
Huang Transformation statistically significantly classified
emotions more accurately than a Wavelet-based approach (P <
0.02). This result implies that Hilbert-Huang Transformation
is a promising tool to increase the prediction of emotional
states, thereby helping to designing and developing more
robust emotion recognition approaches.

Clinical relevance— This remarks the potential of the
Hilbert-Huang transform to enhance EEG-based emotion
recognition systems, which can potentially help to diagnose and
treat mental diseases, such as autism and depression.

I. INTRODUCTION

The Affective Computing (AC) community has remarked
on the relevance of emotion recognition to improve human-
machine interactions [1]. The most common techniques to
recognize emotions in the AC community are neuroimaging
techniques, with electroencephalography (EEG) being the
most used. The advantage of EEG over other techniques,
such as magnetoencephalogram, positron emission tomogra-
phy, and functional resonance imaging, is that EEG is less
intrusive and has a better time resolution [2].

Emotion recognition approaches commonly extract spec-
tral features from the EEG signals to recognize emotions [3],
[4] by either using linear and stationary transformations or
by using linear and non-stationary transformations. However,
since EEG signals are non-linear and non-stationary, the
commonly used transformations, such as the Fourier transfor-
mation or the discrete Wavelet transformation (DWT), may
be unable to precisely describe the nature of such signals.

One transformation that could overcome this limitation is
the Hilbert-Huang transform (HHT), which was introduced in
the 90s to decompose real-world non-linear, non-stationary,
and stochastic processes [5]. Although HHT was introduced
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30 years ago, Jenke et al. (2014) [6], in a review of emotion
recognition from EEG, reported that only one out of 33
works had used this transformation for extracting features.

Hadjidimitriou et al. (2012) [7] pointed out the advantages
of HHT to recognize emotional states by reporting that the
Hilbert-Huang spectrum method is less affected by noise than
methods based on a spectrogram (STFT) and the Zhao-Atlas-
Marks. Recent works have also reported the relevance of
applying HHT to EEG signals to classify pleasant and arousal
emotional values induced by musical and speech stimuli [8]–
[10]

The empirical advantage of HHT over linear transforma-
tions has been analytically discussed in [11], [12]. Huang
et al. (2008) [11] reported that the capacity of the HHT to
obtain local and instantaneous frequency from the signals
allows extracting a more accurate frequency and time res-
olution than the DWT. This adaptive property was further
analyzed by Bueno-Lopez et al. (2017) [12] by comparing
the capacity of HHT and DWT to detect instantaneous
frequency from EEG signals. The authors reported that the
HHT could describe the EGG oscillations, whereas the DWT
resulted in no interpretable components.

This work presents a simple experiment to assess the
benefit of the HHT over the DWT for emotion recognition
from EEG signals. The work first introduces an HHT-based
approach to recognize emotions, and then compares this
approach with a previously published DWT-based approach
[13].

II. METHODS

A. Emotion induction

Positive emotions and negative emotions were induced
using images from the International Affective Picture System
(IAPS) [14]. The IAPS provides the level of arousal (or
intensity) and valence (pleasantness/unpleasantness) for 956
color photographs. According to Lang (1995) [15], in the
IAPS system, positive emotions have high arousal and va-
lence values. In contrast, negative emotions have high arousal
values and low valence values.

In this work, 20 IAPS images were used to evoke emo-
tions. These images were selected based on their arousal and
valence values. The ten images with the highest arousal and
valence values were selected as positive emotion inducers,
whereas the ten pictures with the highest arousal and the
lowest valence values were selected as negative emotional
stimuli.

The sequence was built by locating a negative emotion
picture followed by a positive one, repeating this pattern
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Fig. 1. Image sequence for evoking negative and positive emotions.
Adapted from [29]

Fig. 2. Electrode montage to acquire EEG signals. Adapted from [29]

until all the pictures were placed. In order to neutralize the
emotional state during the transition between two pictures,
a gray screen was placed between the negative and positive
stimuli. Thus, the pattern gray screen, unpleasant picture,
gray screen, and pleasant picture composed a run. Each
picture of this run was shown for five seconds. Fig. 1 shows
the built image sequence.

B. EEG recording

The EEG signals extraction procedure was approved by
the Institutional Review Board. The extraction procedure was
performed in a laboratory environment with proper tempera-
ture and illumination. The EEG signals were captured using a
device ML 4818 PowerLab T15 from AD-Instrument and the
software LabChart on a computer (Intel Core 2 Duo, 2.33
GHz). The signals were recorded at a sampling frequency
of 1000 Hz using four electrodes of the International 10/20
System: O1, O2, Fp1, and Fp2. The reason for choosing these
electrodes was because O1 and O2 are located in the occipital
lobe, which is the brain area initiating the visual process,
perceiving the shape, movement, and color of the observed
object [16]. With regard to Fp1 and Fp2, these electrodes are
located in the frontal lobe, which is a zone participating in
the processing of the emotions [17].

The approach used a bipolar montage, and therefore the
brain activity was measured in both hemispheres using the
two brain channels (Fp1,O1), and (Fp2,O2). Fig. 2 shows
the used montage, using the International 10/20 System as a
reference.

The EEG signals were extracted from ten mentally healthy
subjects (half for each gender) whose age ranged from 18 to
28 years old. Before reproducing the image sequence, each
participant was informed about the experiment protocol. To
avoid noise and artifacts provoked by blinking or muscular
movements, each subject was warned to remain as still
as possible during the projection of the sequence. Each
subject was sat in front of a computer screen, and an
electroencephalograph cap, using wet electrodes, was placed
onto his/her head. The subject’s EEG signals were recorded
while observing the pictures. When the sequence ended, each

participant filled out a survey, indicating for each picture
whether he or she had felt a positive or negative emotion.
Table I shows the self-evaluation responses of participated
subjects.

TABLE I
SELF-EVALUATION OF EMOTIONAL INDUCTION OF THE PARTICIPATED

SUBJECTS

IAPS Category
Subject answer

Positive emotion Negative emotion
Positive emotion 83.75 2.50
Negative emotion 6.25 85.00

Do not know 10.00 12.25

After recording the EEG signals from all the subjects, a
total of 400 signals were obtained for each subject. Half
of the recorded EEG signals corresponded to each brain
hemisphere. Likewise, half of the signals were induced for
each type of emotion (positive or negative).

III. EMOTION RECOGNITION APPROACHES

Two different EEG emotion recognition approaches were
used. Both approaches shared the same block diagram (pre-
processing, feature extraction, and classification stages), but
they differed in the transformation used for extracting the
features. One approach extracted features using the intrinsic
mode functions (IMF) obtained with the HHT, whereas the
second one used the detail coefficients obtained with the
DWT.

Both approaches also extracted fractal features from the
EEG signals since it was previously reported that the com-
bination of spectral and fractal features improved emotion
recognition in the EEG signals used in this experiment [13].

A. Preprocesing

Since EEG signals are prone to artifacts and noise, soft-
thresholding was applied to the recorded EEG signals fol-
lowing steps presented in [18].

B. Spectral features

1) HHT-based approach: HHT decomposes a signal into
a set of functions called intrinsic mode functions (IMFs).
IMFs satisfy two properties: i) The number of extrema
maxima and minima and the number of zero crossings must
be equal or differ at most by 1; ii) The mean value between
the envelope of the local maxima and the envelope of the
local minima must be zero at any point. To obtain the IMFs,
EMD uses an intuitive algorithm called ‘sifting procedure’.
It is an iterative procedure, which finds all the IMFs of the
signal until the difference between output and the input of
the sifting procedure becomes a monotonic function. More
details of the method can be found in [19].

For each IMFs, the logarithmic power (LP), the log-
arithmic energy (LE), the entropy (H), and the absolute
logarithmic energy efficiency (ALREE) were calculated as
presented in [20].

The mean, standard deviation, minimum and maximum of
the LP, LE, H, and ALREE over the IMFs were taken as the
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TABLE II
FREQUENCY DECOMPOSITION FOR THE DWT

Level Frequency range (Hz) Coefficients Sub-band
1 250.00-500.00 d1
2 125.00-250.00 d2
3 62.50-125.00 d3
4 31.25-62.50 d4 Gamma
5 15.63-31.25 d5 Beta
6 7.81-15.63 d6 Alpha
7 3.91-7.81 d7 Theta
7 0.00-3.91 a7 Delta

final spectral features, having a total of 16 spectral values
for each EEG signal.

2) DWT-based approach: The DWT-based approach was
previously introduced in [13]. This approach obtained spec-
tral features by applying statistical and energy functions to
the Wavelet detail coefficients extracted from EEG signals
using the DWT.

The signal was decomposed into seven levels to obtain
coefficients located in the frequency range (2-64 Hz) (see
Table II). The detail coefficient corresponded to beta, alpha,
and theta were selected to extract spectral features. The coef-
ficients from other frequency bands were discarded because
frequencies below 4 Hz are associated with eye movements
and blinking, whereas those below 1.2 Hz are related to
cardiac movements [21]. Moreover, frequencies above 30 Hz
are related to muscular reflexes.

The DWT-based approach calculated 187 spectral features
corresponding to the logarithmic power, logarithmic energy,
ALREE, entropy energy, entropy power, energy, absolute
logarithmic power efficiency, mean, standard deviation, max-
imum, minimum, and the square root of the eigenvalues of
the coefficient matrix. This feature vector was reduced to six
values using principal component analysis. More details of
the DWT-based approach can be found in [13].

C. Fractal features

Two different fractal techniques were used to extract
features from the EEG signals. Firstly, the signal singularity
spectrum of the EEG was calculated following the method
proposed in [22], choosig the the five exponents with the
highest spectrum values as features. Secondly, the fractal
dimension was calculated using Higuchi’s algorithm [23].

D. Classification

The final dataset for classification was obtained by con-
catenating the features of the two channels corresponding
to the same visual stimuli. The final dataset thus comprised
200 samples, 20 per subject, were half corresponding to each
type of emotion (positive and negative).

Leave-out-one cross-validation (LOOCV) was used over
the 200 samples. At each iteration, the training samples (199)
were used to train a binary support vector machine (SVM)
with a Gaussian kernel function. The C and σ parameters
were selected using nested cross-validation in the search
space 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000.

The nested cross-validation accuracy rates obtained
through the LOOCV were used as a first indicator to compare
the two approaches’ performance.

Fig. 3. Probability density distribution for the training sets during the
LOOCV

The comparison of the approaches was performed using
the prediction of the held-out sample of the LOOCV proce-
dure. Each iteration of the LOOCV resulted in a prediction
error of either 0% or 100% since the classifier was binary
and only one sample was in the test set. The 200 estimations
were used to compute the accuracy, sensitivity, specificity,
precision, and F1-score were calculated.

Finally, the metrics of both approaches were compared
with a right-sided two-sample t-test with the null hypothesis
that the corresponding metric of HHT-based approach was
lower than or equal to the accuracy of the DWT-based
approach (Ho : πHHT ≤ πDWT ; Ha : πHHT > πDWT ).

IV. RESULTS

A. Training performance

Fig. 3 shows the probability distribution for the nested
cross-validation accuracy rates obtained through the LOOCV.
The HHT-based approach probability distribution was cen-
tered further right than that of the DWT-based approach. The
HHT-based approach also achieved a lower dispersion around
the center, thus having a lower variance over the LOOCV
iterations.

B. Testing performance

Both approaches equally well classified positive emotions,
yielding the same sensitivity (Table III). However, the DWT-
based approach showed a lower capacity to detect negative
emotions, obtaining a specificity lower by more than 15
percent. The better capacity of the HHT-based approach
to detect both types of emotion resulted in statistically
significant differences for the accuracy, specificity, precision,
and F1-score metrics (right-sided two-sample t-test; P <
0.02).

V. DISCUSSION AND CONCLUSION

The results presented in this work indicate that an HHT-
based approach can recognize human emotion from EEG
signals more accurately than a DWT-based approach.

The higher capacity of the HHT-based approach to dis-
criminate between positive and negative emotions suggests
that HHT transformation was able to extract the non-
stationary and non-linear properties of EEG signals. This
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TABLE III
ACCURACY, SENSITIVITY, SPECIFICITY, PRECISION AND F1 SCORE OF THE HHT-BASED AND WAVELET-BASED APPROACHES FOR THE LOOCV. A †

INDICATES A STATISTICALLY SIGNIFICANT DIFFERENCE BETWEEN THE TWO APPROACHES (RIGHT-SIDED TWO-SAMPLE T-TEST; α = 0.05)

Method Accuracy Sensitivity Specificity Precision F1 score
HHT-based method 94.5 %† 94.0 % 95.0 %† 94.9 %† 94.5 %†

DWT-based method 86.0 % 94.0 % 78.0 % 81.0 % 87.0 %

result is consistent to [11], [12], in which by analytical
comparison, reported that the HHT was more accurate than
the DWT to describe oscillations and extract instantaneous
frequencies from EEG signals.

The statistically significant difference in specificity for the
two approaches suggests that negative emotions might be
correlated with non-linearity properties of the EEG signals
since the DWT, which is a linear transformation, achieved
a lower specificity. However, further research is needed to
validate this statement.

A limitation of this work is that it only compared the HHT
transformation with the DWT, and no other transformations
were considered. However, the obtained results suggest that
the accuracy of the EEG emotion recognition approach can
be increased using HHT. Thus, future research should com-
pare the HHT-based approach with different transformations.

Another limitation is that only two emotional states
were considered for the comparison. Although providing
approaches able to classify different emotions is relevant for
the AC community, the main purpose of the current work
was to empirically assess whether HHT could improve the
classification of emotions.

Moreover, this work only used an SVM to compare the
approaches, and no advanced models, such as deep learning
methods or random forest, were considered. However, the
capacity of HHT for extracting non-linear properties goes
beyond the selected classifier, and similar results may be
expected with different classification techniques.

The presented result suggests that HHT is a promising
transformation for designing and developing more robust
emotion recognition approaches.
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