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Abstract— Attention-deficit/hyperactivity disorder (ADHD) is
a neurodevelopmental disorder that could persist into adulthood
with known abnormalities in brain structure. Genetics also play
an important role in the etiology of the disorder and could
affect the disorder trajectory. In this study, we investigated
the prediction power of brain image and genomic features
for symptom change in 77 individuals with ADHD as part of
NeuroIMAGE cohort. Gray matter components and working
memory assessments at baseline, as well as gene scores of
interest, were used to predict the changes in the two symptom
domains: inattentive and hyperactive/impulsive, an average of
4 years. A linear regression model coupled with various feature
selection approaches, including leave-one-out-cross-validation
(LOOCY), stability selection with resampling, and permutation
tests, was implemented to mitigate the overtraining potential
caused by small sample sizes. Results showed that traditional
LOOCY overestimated the prediction power. We proposed a
novel stability selection with the threshold set by permutation
tests, which provided more objective assessment. Using our
proposed procedure, we identified a statistical promising pre-
diction model for inattention symptom change; the consistent
correlation between predicted values and measured values
during model training, validating and hold out testing (r=0.64,
0.53, 0.46, respectively), but the p value is not significant in
the holdout test. The selected features include age, gray matter
in the insula, genes OSBPL1A, CTNNB1, PRPSAP2, ACADM,
and polygenic risk score of education attainment, which have
been previously reported to be associated with ADHD. We
speculate that significant associations may be observed with
a large sample size.

I. INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is one of
the most common neurodevelopmental disorders of child-
hood. It is usually first diagnosed in childhood and could
persist into adulthood [1]. Children with ADHD may have
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trouble paying attention, controlling impulsive behaviors
(may act without thinking about what the result will be),
or be overly active [2], and may also have various types
of cognitive impairments [2]. A meta-analysis of follow-up
studies has shown that in about 15% children with ADHD
the disorder persists into adulthood, and the persistence
percentage increases to 65% if partially remitted patients are
considered [2]. Although the classification of ADHD and
the persistence of ADHD are binary, highly dependent on
the threshold used by the clinicians following the Diagnos-
tic and Statistical Manual of Mental Disorders (DSM) or
International Classification of Diseases(ICD), the symptoms
themselves are continuously distributed among individuals,
as are the symptom changes. Predicting the trajectories of
ADHD symptoms along the disorder progression can have
huge impact in the development of effective prevention
and treatment; it can classify individuals whose symptoms
aggravate in the future, and thus early intervention can be
provided in time.

Many longitudinal studies have been devoted to uncover-
ing the the factors influencing the course of ADHD symp-
toms and to improve the prediction of symptom trajectories
[4]. As reviewed by Caye, et al. a meta-analysis summarized
the consistent predictors of symptom trajectory including
characteristics of the clinical syndrome, ADHD symptom
severity, treatment, comorbidities, and parental mental health
problems, etc. [5]. However, little is known about the rela-
tion between brain structure and function factors and the
symptom trajectory, in spite of abundant evidence support
association of brain anomalies with ADHD and it’s symp-
toms. Structural MRI studies have suggested that gray-
and/or white-matter structural underdevelopment in frontal
lobe, thalamus, and striatum significantly contribute to the
emergence of ADHD during childhood [6-9]. Furthermore,
persistence of ADHD symptoms is linked to reduced regional
cortical gray matter thickness in frontal and parietal cor-
tices [10,11]. Our team also found frontal and cerebellum
gray matter variations consistently associated with working
memory deficit and inattention symptoms in both adolescents
and adults with ADHD[1-3]. Functionally, lower connection
efficiency in right inferior frontal gyrus and left-side frontal-
parietal functional interactions were observed in both adult
remitters and persisters, and unique lower connection effi-
ciency in right middle frontal gyrus and hyper-interactions

1950



between bilateral middle frontal gyrus in persisters [12,13].
How brain structural and functional alterations relate to
symptom trajectory is yet to be studied[14].

The heritability of ADHD is estimated between 30%-
80% in twin and family studies [15]. Strongly increased
risks for ADHD (57%) among the offspring of adults
with ADHD have been reported [16]. Longitudinal studies
that investigated the genetic contributions to the long-term
ADHD suggested while persistence of ADHD symptoms
is predominantly due to the same genetic influences as its
onset, changes of symptoms are to a large extent due to
new genetic effects beginning in early adolescence, as well
as environmental factors [17]. More recently, large sample
genome-wide association studies (GWAS) have reported sev-
eral genetic risk loci for ADHD [18]. Polygenic risk score
(PRS) based on GWAS risk profile, estimating an individual’s
genetic liability for a particular disorder or trait, were able to
explain significant variance (5.5%) in ADHD [18]. Genetic
risk for ADHD is highly correlated to the risk to other
disorders or traits, and one of the highest correlations are
from genetics for college completion [18]. To what extent
the genetics could influence the course of ADHD symptom
is largely unstudied.

Although various genetic, cognitive, and neural factors
have been associated with ADHD, very little is known
about their combined ability to predict the symptom trajec-
tory. In this study we leveraged longitudinal data collected
from individuals with ADHD and investigated the prediction
power of brain structure and genomic features, as well as
cognition assessments, for future symptom changes. Based
on the previous findings we hypothesize that the interplay
of the examined factors might better explain the trajectory
of symptoms in both domains (inattention and hyperactivity)
than any individual feature set. Assessing the neural, genetic,
and cognitive factors of subjects can enrich our understand-
ing of the symptom trajectory and thereby aid in creating
personalized prevention and treatment.

II. MATERIALS AND METHODS
A. PFarticipants

We employed a subset of data from NeuroIMAGE project
[19]. The NeuroIMAGE is a multi-site prospective cohort
study designed to investigate the course of ADHD, its
genetic and environmental determinants, its cognitive and
neurobiological underpinnings, and its presentations in ado-
lescence and adulthood. The study was approved by regional
ethics committee and the medical ethical committee of the
VU University Medical Center. All participants provided
a written consent form. From all participants, we selected
77 participants, including 43 male and 34 female, who 1)
met the ADHD diagnostic criteria based on DSM-IV at
one time point ( here named baseline), 2) provided good
quality neuroimaging and genetic data at baseline, and 3)
had cognitive and symptom assessments at both baseline and
follow up time points. The average age of the participants
was 16.30 and 19.97 years old for the baseline and follow
up timepoint respectively.

Symptoms were measured in both domains: inattention
and hyperactivity/impulsivity. Symptom change between the
two time points reflects the progression of disorder and is the
variable we want to predict. WAIS Digit Span test (maximum
forward and maximum backward scores) was utilized to
gauge working memory capacity, as it showed persistent
impairment in adolescents and adults with ADHD [1,20].
Base-line working memory scores are the features tested for
prediction.

B. Neuroimaging data and features

T1-weighted MRI images after quality control were nor-
malized, modulated, segmented, and smoothed with 6mm
Gaussian kernel using SPM12, and the resultant gray matter
maps were further regressed out age, sex, and site effects.
Independent component analysis was then applied to the
whole brain voxels with gray matter density >0.2, resulting
in 24 components. The details of preprocess can be seen in
[1].

Each component is a brain network and the relative gray
matter density of this network is measured by the component
loadings. Also, we added 5 more components we identified
in our previous studies that are associated with adult ADHD
symptom and cognitive impairment [1]. These 29 gray matter
components’ loadings were the input features for prediction
model.

C. Genomic data and features

From genomic SNP data after imputation, we computed
two sets of genetic scores: Quantative Genetic Score (QGS)
[20], and Polygenic Risk Score (PRS) [21]. QGS assigns
a numeric value 0 < QGS < 1 to any preselected genetic
region, based on the average difference between an individ-
ual’s genetic information (in the form of genotypes) and that
of a reference population (i.e. the same reference used to
impute genetic information to said individual). QGS can be
interpreted as a measure of individual’s genetic “distance”
to the reference population: a lower score indicates higher
similarity to the reference population, whereas a high score
indicates a lower similarity [20]. We selected 29 genes whose
QGS scores were stably associated with the five gray matter
components underlying adult ADHD symptoms and working
memory impairments [1]. See details of QGS method in [20].
PRS is the weighted summary score of individual SNPs’
risk to a specific disease or trait based on genome-wide
association study results. We computed PRS for education
attainment [22], intelligence [23], ADHD [18], and major
disorder [24] using PRsice2 [21].

D. Data Analysis

In this study we focused on using baseline brain images,
working memory tests, and genetic scores to predict symp-
tom changes in both inattention and hyperactivity/impulsivity
domains. Specifically, tested predictors include age, sex,
baseline 29 gray matter components, QGS of 29 genes,
four PRS, baseline working memory scores, and the interval
between two timepoints. To build a reliable prediction model,
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we implemented stepwise linear regression with forward
feature selection, LOOCY, stability selection with resampling
(two resampling strategies: subsamples and bootstrapping
with replacement), permutation test. We combined step-
wise linear regression feature selection with LOOCV (FS-
LOOCV), which is useful when a small sample size cannot
afford withholding data from the training set [25]. As in
Figure 1, we performed FS-LOOCYV in full training sam-
ples. To further reduce overfitting, we performed stability
selection with resampling, and the permutation tests with
different feature sets. Finally, we performed validation test
on independent holdout samples. The details of each step are
explained next.

Training samples Testing samples

Level 1: Feature Level 2: Stability Permutation test

selection
Feature

FS-LOOCV with
sub sampling

FS-LOOCV with

FS-LOOCV with
permutated
samples & the
testing feature set

Final model
holdout test

FS-LOOCV in
training
samples

FS-LOOCV with
permutated
samples & the final

bootstrapping
with replacement

| features

Fig. 1: Analyses performed on the data

FS-LOOCYV: The performance of any machine learning
model is sensitive to the set of features that are used in the
training of the model. Determining the best set of features
for the final model is called feature selection. Here we used
forward stepwise regression, a procedure that selects the
best set of features iteratively. Specially for a prediction
model, starting with no predictors in the working set, at each
iteration the algorithm tests model accuracies for individual
predictors when added to the working set, and selects only
one predictor with the best model fit to the working set. We
used LOOCV R? to measure model fit. All training samples
except one were used to build a linear regression model,
which was then used to predict the value of the one sample
not used. Repeat this procedure for N times (N = size of
training samples) to generate predicted values for all training
samples. LOOCV R? is then computed as

SSres
SStot

LOOCVR?>=1-

Where, SSpes = >, (yi — fi)?; f; = predicted value and
1; 1s true value

SStot = >2i(yi

values

—4)?; y; = true value and § = mean of true

The pseudocode of the FS-LOOCYV stepwise regression is
as follows:

1) Starting with an empty working set, S, and all
available predictors, Predictors Set
2) Iterate over available predictors in the Predic-
tors Set
a) Add each predictor to the working set S
b) Test the model estimate using LOOCV
when the predictor is added
¢) Remove the added predictor from S
3) Add the best predictor to the working set S
4) Remove the best predictor from Predictors Set
5) Repeat Step 2, 3 and 4.

To further reduce possible overfitting, we performed sta-
bility selection with resampling for the feature set after FS-
LOOCYV. Stability selection identifies the most stable predic-
tors by assuming that the same algorithm should yield similar
results on similar datasets if the results are ‘“‘stable” [26].
To generate similar data, we implemented subsampling and
bootstrapping strategies. For sub-sampling, sample sizes of
50, 55, 60, and 65 were selected. 64 sub-samples, including
16 random sub-samples of each sample size, are generated
and FS-LOOCYV is applied. The features selected from each
sub-sample are aggregated. Frequency of each feature being
selected indicates its stability. Whereas for bootstrapping, in
each iteration, an instance is drawn from the same original
dataset such that certain instance may appear more than once
in a bootstrap sample [27]. We applied FS-LOOCV to each
of the bootstrap samples, aggregate the features selected,
and compute the feature frequency. For both resampling
strategies, a preset threshold is used to select stable features;
i.e., features with frequency higher than the threshold will
be selected as stable features.

E. Permutation Tests

To select the best threshold for stability frequency and
empirical significance, we performed permutation test. We
performed two permutation tests using, 1) all the 65 features
in the dataset to set up the best threshold on stability selection
and to test the power of samples to select the features, and
2) the selected features from the selected threshold to test
the empirical significance of model prediction on symptom
change.

For the permutation test using the full 65 features, we
generated 100 datasets by randomly permuting the sample
symptom scores of the full training data. For each dataset,
the analysis methods used on the original data were applied,
i.e. FS-LOOCV stepwise regression followed by stability
selection. On the aggregated features derived from multiset
resampling, different thresholds (50% to 100% in steps of
5) were applied to select stable features, and then using
selected features the model was trained and tested using
LOOCYV. The model performance was measured by R?. For
each threshold, we calculated p-value as the probability of
obtaining the R? on permuted samples equal to or greater
than the observed R? in the original data at the same
threshold. For example, a p-value of 0.23 at threshold 90%
indicates a 23% chance of getting higher LOOCYV explained
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variance (R?) in the randomly permuted samples than the
observed explained variance in original data with the features
selected at the same threshold of 90% (R? calculated using
the same analysis method). The threshold that gave the best
p-value (smallest p value) was used to set the threshold for
selecting final features.

Another permutation test was performed in the same
manner but only using the selected features of all training
samples. The null hypothesis is the selected features cannot
predict dependent variable. Analysis was performed on data
with the selected features and permuting the symptom scores
[28] to test the empirical significance.

E. Holdout Test

Finally, we used the 6 hold out samples to verify the
final prediction model, which is estimated using the linear
regression on all 71 samples with the final selected features.

We calculated the model estimate on the holdout dataset
using the linear model trained on all 71 samples with the
final selected features. We used 6 datapoints that were not
included in the original dataset.

III. RESULTS

First, using feature selection we reduced the feature space
from 65 to 25 features in inattention domain (14 in the
hyperactivity domain). Further, using stability selection with
subsampling, to counter overfitting, we further reduced the
feature space to 7 features. In the bootstrap method of
stability selection, resulting frequencies of each aggregated
features is very low. Standard data analysis was performed
(training, testing, and holdout testing) and selected features
explained significant variance in training and testing in both
domains. However, the holdout testing in both the domains
was not significant.

A. Inattention Domain

Using the FS-LOOCYV stepwise regression we selected 25
features that gave maximum LOOCV R? . Figure 2(a) plots
the R? of the linear model trained with all the samples and
LOOCV R? at each iteration of stepwise regression. After
the 25" iteration with 25 features the LOOCV R-square
reaches the highest values and with each additional iteration
R? value starts diminishing.

Using stability selection with 64 sub-samples, we com-
puted the frequency of the 25 features from the stepwise
regression. Figure 2(b) shows the frequency distribution of
the features. There are 5 features which were included
by all the stability models i.e. these features are strongly
associated with symptom change. 19 features were selected
at least by 50% of the subsample models. In contrast, Figure
2(c) shows the frequency distribution of features computed
using bootstrapping (subsampling with replacement). The
maximum frequency attained by the bootstrap method is
33%. Most of the features are selected only by 20% of the
bootstrap models.

Figure 2(d) shows the frequency thresholds and their
respective p-values calculated using permutation tests (tests

performed using the full feature set). The p-value is highest
at 50% threshold and starts decreasing while the threshold
increases. The most significant result among all feature sets
is p-value of 0.23 achieved by the features thresholding at
frequency of 90%. Of the 25 features selected in stepwise
regression with forward selection, 7 features had frequency
greater than 90%.

The 7 features include Age, gene OSBPL1A, CTNNBI,
GM in Insula region (Fig 3) which are negatively correlated
to the symptom change, while genes PRPSAP2, ACADM,
and PRS of education attainment were positively correlated
to the symptom change. The permutation test performed
using these 7 selected features has a p-value < 0.05. Table 1
summarizes the model training, testing, and holdout results in
the inattention domain. The training model fit using all points
with these 7 selected features has R? = 0.418 whereas the
LOOCYV testing R? = 0.26. Also, the correlation between the
predicted values and true value in both the phases, training
and testing, is 0.64 and 0.53 respectively. On the other hand,
in the holdout test, the r-square is negative (-0.018) while the
correlation is positive (0.46). The empirical p-value obtained
by the permutation tests with these selected 7 features is less
than 0.05.

TABLE I: Training, LOOCV testing, and holdout testing R2,
correlation, and MSE between true and predicted value

Phase R? Correlation MSE
Training 0.41 0.64 3.31
LOOCYV Testing 0.26 0.53 4.20

Holdout Testing -0.018 0.46 10.04

B. Hyperactivity Domain

Similar to inattention domain, in the hyperactivity do-
main, using FS-LOOCV stepwise regression we selected
14 features that gave LOO R2. The plot shown in Figure
4(a) compares the training R? vs the LOOCV testing R2.
The LOOCV R? is maximum after 15 iterations and starts
decreasing when further features are added. Moreover, the
R? becomes negative on further iterations.

Using stability selection with 64 sub-samples, we com-
puted the frequency of the 14 features from the stepwise
regression. Figure 4(b) shows the frequency distribution of
the features. There are 5 features which were included by
all the stability models i.e. their frequency is greater than
95%. 11 features were selected at least by 50% of the
subsample models. On the other hand, Figure 4(c) shows
the frequency distribution of features computed using boot-
strapping (subsampling with replacement). The maximum
frequency attained by the bootstrap method is 32%. Most
of the features are selected with equal frequency.

Figure 4(d) shows the frequency thresholds and their
respective p-values calculated using permutation tests (tests
performed using the full feature set). The p-value is highest
at 50% threshold and starts decreasing while the threshold
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Fig. 2: Results from prediction of inattention symptom change. a) comparison of LOCCV-R? and training R?. b) Frequency
distribution of features selected using subsampling method of stability selection. C) Frequency distribution of features selected
using the bootstrapping method of stability selection. d) The thresholds for stable feature selection and their respective

permutation test p-value
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Fig. 3: Grey Matter(GM) component from insula region

increases. The most significant result among all feature sets
is p-value of 0.33 achieved by the features that are threshold
at frequency of 80%. Of the 14 features selected in stepwise
regression with forward selection, 6 features had frequency
greater than 80%.

At threshold of 80%, we selected 6 features that include
genes CTNNB1, DYNCIII, GM component (negatively
correlated), genes PRPSAP2, LINGO02, and AC104662_2
(positively corelated) were selected. The permutation test
performed using these 6 features has a p-value < 0.05. Model
fit with all data points with these features has an R2? of
0.31 and in the LOOCV testing the R? is 0.17. But the
permutation p-value is 0.38. The holdout test result showed
correlation r= 0.017 whereas R? = -2.82.

IV. DISCUSSION

In this study, we investigated the ability to predict the
trajectory of the symptoms in both domains—inattention,
and hyperactivity—using features from sMRI images and

TABLE II: Training, LOOCV testing, and holdout testing
R?, correlation, and mean squared error between true and
predicted value in hyperactivity domain

Phase R? Correlation MSE
Training 0.31 0.56 4.48
LOOCYV Testing 0.17 0.43 5.43
Holdout Testing -2.82 0.025 3.40

genomics of ADHD cohort of 77 subjects. Using stepwise
regression with forward selection, we selected features that
explain maximum variance in the symptom change. But
testing results indicated the model to be overfitting. Using
stability selection coupled with permutation tests, we further
reduced the feature space. Permutation tests suggested we do
not have the power for selecting features. But given the final
selected features, for inattention, the prediction performance
is very promising within our samples. In inattention domain,
we identified age, genes OSBPL1A, CTNNB1, PRPSAP2,
ACADM, and one GM component in the insula region
associated with symptom change.

In both symptom domains, using the stepwise regression
with forward selection we selected the set of features that has
maximum testing LOOCV R2. Even though this is a standard
approach for feature selection and model training, however,
as shown in the Figures 2(a) and 3(a), the improvement
of testing LOOCV R? from a lower feature set (16 for
inattention and 10 for hyperactivity) to the top feature set is
small compared to the gap between training R? and testing
LOOCV RZ. These results indicate that 1) set of features that
gave maximum LOOCV R? are overfitting, and 2) a smaller
set of features can explain similar variance.

Thus, we applied stability selection in combination with
permutation tests to further reduce feature set to alleviate
overfitting. Two sampling strategies were used for stability
selection. In most studies the threshold value for stable
feature selection has been a tuning parameter i.e. no objective
way to determine the value. In this study, we used permuta-
tion tests to determine the threshold such that the variance
explained by features selected at the threshold is significant
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Fig. 4: Results from prediction of hyperactivity symptom change. a) comparison of LOCCV-R? and training k2. b) Frequency
distribution of features selected using subsampling method of stability selection. C) Frequency distribution of features selected
using the bootstrapping method of stability selection. d) The thresholds for stable feature selection and their respective
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(or the most significant) compared to the null distribution
simulated by permuted samples using features selected at
same threshold. The difference between the training and
testing R? results summarized in the Table 1 and Table 2
show that the smaller set of features has reduced overfitting.

However, the best p-value obtained using the permutation
tests to identify the threshold of frequency, are 0.23 and 0.36
in the inattention and hyperactivity domains respectively.
These results indicate that the selection of features using
the threshold are non-significant; we do not have the power
to select the features. On the contrary, the permutation tests
performed using the selected features has empirical p-value
< 0.05 which indicate that these features are significantly
associated with the symptom changes within our training
samples, but we do not know whether this is true for other
independent samples.

On the other hand, the bootstrap method for stability selec-
tion was unable to select stable features due to heterogeneity
in the data sample. We observed each data sampling produces
a model with similar performance (R?) but different feature
sets. We speculate that within our small samples there are
large heterogenous properties, so that each bootstrapping
sampling has different property distribution, leading to a
different feature set and model. Compared to subsampling
strategy, common samples between any two samplings in
bootstrapping is less, leading to low frequencies as shown in
Figure 2(c) and 4(c).

The LOOCYV testing results in both the domains were
promising. However, LOOCYV is known to have inferior
performance for model estimation, risk for overfitting [29].
The additional validation test results are not significant and
suggest the features selected lack generalizable power to
significantly explain the symptom changes. Though the vali-
dation R? is small in the inattention domain, the correlation
between the true value and the predicted value is high
(r=0.46) and in the same level as training and testing results.
The consistent effect size provides very promising indication
of strong association among the features selected and the
symptom change. This non-significance might be the result
of small sample size of validation sets. We speculate that with
large sample size these features may be proven significantly

associated with symptom changes. On the other hand, the
results in the hyperactivity domain indicate no association
of features with the symptom change.

The features identified in the inattention domain include
genes OSBPL1A and PRPSAP2 that have been previously
reported to be associated with the ADHD [30]. The gene
CTNNB1 was discovered recently to be responsible for
developmental delay/intellectual disability [31]. CTNNBI is
important in the development and maturation of the brain and
loss of its function causes learning and memory problems
[31]. Aging effects on ADHD has been researched exten-
sively [32,33]. Furthermore, the GM components reported
in our results —component in the insula region, are also
previously reported to be associated with ADHD problem
[34]. However, the effect of postcentral gyrus on ADHD is
yet to be studied.

The small sample size of 77 hinders our statistical analyses
be generalizable to other data. This is demonstrated by the
inability of obtaining significant results using the validation
testing. To sum up, in this study we aimed to predict the
trajectory of the ADHD symptoms in both the domains —
inattention, and hyperactivity using genetics and neuroimag-
ing data. Using data of 77 subjects from two time points
(6 subjects used for holdout testing) we performed variable
selection using stepwise regression using forward selection,
leave one out cross validation. The selected variables were
still overfitting, to further reduce overfitting we performed
stability selection in combination with permutation tests and
selected top features. In both the domains, the features
selected were unable to explain the symptom change in the
test samples. However, in the inattention domain, the features
selected do have strong association with the symptom change
and can be studied further to predict the trajectory of ADHD
symptoms.
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