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Abstract— Blind linear unmixing (BLU) methods allow the
separation of multi and hyperspectral data into end-members
and abundance maps in an unsupervised fashion. However,
due to incident noise, the abundance maps can exhibit high
presence of granularity. To address this problem, in this paper,
we present a novel proposal for BLU that considers spatial
coherence in the abundance estimations, through a total
spatial variation component. The proposed BLU formulation
is based on the blind end-member and abundance extraction
perspective with total spatial variation (EBEAE-STV). In
EBEAE-STV, internal abundances are added to incorporate
the spatial coherence in the cost function, which is solved by a
coordinates descent algorithm. The results with synthetic data
show that the proposed algorithm can significantly decrease the
granularity in the estimated abundances, and the estimation
errors and computational times are lower compared to state
of the art methodologies.

Clinical relevance— The proper and robust estimation of
end-members and their respective contributions (abundances)
in multi-spectral and hyper-spectral images from the proposed
EBEAE-STV methodology might provide useful information in
several biomedical applications, such as chemometric analysis
on different biological samples, tumor identification and brain
tissue classification for hyper-spectral imaging, among others.

I. INTRODUCTION

Hyperspectral imaging is a powerful tool for acquiring in-
formation remotely, with multiple applications in the biomed-
ical engineering field, for example to classify biological
tissue and to identify dermatological diseases [1]–[4]. A
hyperspectral image (HSI) can be visualized as a three-
dimensional dataset, where each pixel in the 2D spatial
domain has a spectral response with hundreds or thousands
of bands that provide detailed information of the region or
sample analyzed [5], [6]. In a HSI, a pure component in a
given pixel is denoted as spectral signature or end-member,
while its contributions per pixel are called abundances [6].
Nonetheless, most of the times, the information captured
by a HSI corresponds to the spectral mixture of different
pure materials due to a low spatial resolution, and multiple
dispersion during acquisition, which makes the analysis
of these images a challenging task [6]. To overcome this
problem, a processing stage has to take advantage of the
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information present in the HSI by identifying properties and
characteristics of each element in an independent way; these
processing techniques are known as hyperspectral unmixing
(HU) [7].

HU methods are a set of mathematical tools to obtain
the corresponding abundance maps of a HSI from given
end-members (supervised perspective) [5], but if both end-
members and abundance maps are estimated jointly in a
unsupervised way, then this problem is called blind hy-
perspectral unmixing [6], [8]. The most widely used HU
methods in the literature are based on a linear mixture
model (LMM) for each pixel, due to their relative simplicity
and practicality [9]–[11]. Thus, the joint estimation of end-
members and their abundances in a HSI by a LMM is
denoted as blind linear unmixing (BLU); a recent example
of BLU is the extended blind end-member and abundance
extraction (EBEAE) methodology [8]. Although LMM have
proven to be efficient in estimating end-members and abun-
dances from HSI, the resulting methods are susceptible to the
presence of noise from various sources and light scattering
from adjacent pixels [12]. In addition, all LMM techniques
perform an analysis in discrete locations, so that they can
produce granularity in the abundance maps, generating un-
wanted estimation errors [12], [13].

In recent years, proposals have emerged that attempt
to compensate for the shortcomings of LMMs, such as
performing a filtering stage prior to the unmixing stage
and, more recently, adding spatial coherence information
to the HU process, reducing the impact of noise and the
estimation in discrete locations [14], [15]. Nevertheless, by
considering the neighboring pixel information in the HU
methods, the computational complexity and control variables
are increased, which produces large execution times [16].

In this context, we present a new version of EBEAE,
which considers in its formulation spatial coherence infor-
mation by means of the total variation theory, called EBEAE
with spatial total variation (EBEAE-STV). In order to gen-
erate a controlled environment for the validation process, the
EBEAE-STV algorithm is evaluated with synthetic datasets
from near-infrared (VNIR) images by adding various types
and levels of noise. Also, EBEAE-STV is compared with
three methodologies in the state of the art, which illustrates
the improved performance of the proposal.

II. PROBLEM FORMULATION

In our formulation, we assume the existence of K mea-
surements of a physical variable, expressed as real-valued
L-dimensional vectors zk ∈ RL with k ∈ [1,K]. In addition,
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the set of measurements Z = {z1, . . . , zK} is normalized,
so that each element is scaled to add up to one, such that
yk = 1

1T
Lzk

zk ∀k. For the scaled set of measurements
Y = {y1, . . . ,yK}, we assume that the k-th element can
be represented by a linear mixture model of N -th order:

yk =

N∑
n=1

αk,npn + vk = [p1, . . . ,pN ]︸ ︷︷ ︸
P∈RL×N

αk,1

...
αk,N


︸ ︷︷ ︸
αk∈RN

+vk, (1)

where pn ∈ RL is the n-th end-member ∀n ∈ [1, N ] (pn ≥
0 and 1>Lpn = 1), while αk,n ≥ 0 represents its abundance
in the k-th measurement. The abundances in k-th spatial
location are normalized, i.e. 1>Nαk = 1. The vector vk

represents independently and identically distributed Gaussian
noise, with zero mean and finite covariance matrix. The
scaled measurements, abundances and noise vectors can be
represented in matrix notation as Y = [y1 · · ·yK ] ∈ RL×K ,
A = [α1 . . .αK ] ∈ RN×K , and V = [v1 . . .vK ] ∈ RL×K ,
respectively; so the LMM is expressed as Y = PA + V.

The estimation problem departs from the EBEAE method-
ology in [8] by proposing a modification of the energy
functional to take into account spatial coherence. This new
synthesis problem can be described as

min
A,P,W

1

2K

K∑
k=1

‖yk −Pαk‖2

‖yk‖2
+

ρ

2ϑ

N−1∑
n=1

N∑
j=n+1

‖pn − pj‖2

+
λ

2K

K∑
k=1

‖wk −αk‖2 +
τ

K
HTV (W), (2)

with ρ, λ, τ as regularization weights, and ϑ , 1 + . . . +
(N−1) for all N ≥ 2. On the other hand, we introduce new
internal abundance vectors {wk}Kk=1, which are gathered
in W = [w1, ...,wK ] ∈ RN×K that corresponds to the
matrix of internal abundances. The functional HTV (.) is
a hyperspectral total variation regularization term that con-
siders a spatial correlation, as proposed in [15]. In this way,
the optimization in (2) can be solved with three decoupled
subproblems by a coordinates descent scheme [17]: End-
members estimation P, abundances computation A, and
internal abundance extraction W. To obtain the solution
of these sub-problems, a restricted quadratic optimization
approach with coordinates descent scheme is followed, that
is, the matrices of two sub-problems are kept fixed, while
the remaining one is optimized until convergence of the
overall estimation error or the maximum number of iterations
is reached [8], [17]. Consequently, in this proposal, the
estimation of the internal abundances in W is added to the
EBEAE problem, so the energy functional in (2) is updated.
Meanwhile, the end-members estimation follows the original
formulation in [8].

A. End-members Estimation

In this sub-problem, we assume that the abundances ma-
trices A and W remain fixed in the estimation process, and

by rewriting (2), we obtain

min
P≥0

1

2K

K∑
k=1

‖yk −Pαk‖2

‖yk‖2
+

ρ

2ϑ

N−1∑
n=1

N∑
j=n+1

‖pn − pj‖2,

(3)
with the restriction P>1L = 1N. To meet the constraints of
the previous problem, a Lagrange multiplier is added for the
equality condition in the cost function, and the stationary
conditions for the optimal value are derived to obtain a
closed-solution. In this synthesis problem, the parameter
ρ plays an important role in (3), since when ρ ≈ 1 the
resulting end-members will exhibit similar morphological
characteristics; meanwhile when ρ ≈ 0 the end-members
can be very different.

B. Abundances Estimation

The second sub-problem is solved for each measurement
in Y , and assumes that the matrices W and P are known
a priori. Hence, the abundances estimation αk for k-th
measurement is formulated from (2) as

min
αk≥0

1

2
‖yk −Pαk‖2 +

λŷk
2
‖wk −αk‖2, (4)

with α>k 1N = 1 and by defining the constant ŷk = ‖yk‖2.
As in the case of the previous sub-problem, a Lagrange
multiplier is included in (4) to ensure the equality restriction,
and a closed-form solution can be deduced, as described in
[8].

C. Internal Abundances Estimation

In the next step, the abundance matrix A is known and
remains fixed to estimate the internal abundances matrix W.
For this estimation, a vector representation is used in (2) and
solve it per each end-member index n:

min
Wn

λ

2K
‖Wn −An‖2 +

τ

K
‖WnD

>
x ‖1 +

τ

K
‖WnD

>
y ‖1,

(5)
where An ∈ R1×K and Wn ∈ R1×K denote the n-th row
in A and W, respectively, i.e. these row vectors represent
the nominal and internal abundances of n-th end-member;
Dx ∈ RK×K and Dy ∈ RK×K represent horizontal
and vertical 2-D finite difference operators applied to the
internal abundances, with a zero adjustment at the borders
to maintain the original dimensions [15]. In (5), ‖ ·‖ denotes
the Euclidean norm, and ‖ · ‖1 the 1-norm for vectors.

The optimization problem (5) is high-dimensional, non-
differentiable by the 1-norm, and Wn is not separable.
To solve this problem, we first introduce new variables
R = WnD

>
x and Q = WnD

>
y in (5) to reformulate the

optimization problem as suggested in [15]:

min
Wn,R,Q

λ

2
‖Wn −An‖2 + τ‖R‖1 + τ‖Q‖1

+
ν

2
‖R−WnD

>
x ‖2 +

ν

2
‖Q−WnD

>
y ‖2, (6)

where ν is a regularization parameter for both horizontal and
vertical terms to consider equal contributions.
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Finally, the expression in (6) can be divided into three
subproblems by means of the Bregman division, which are
relatively easy to solve as shown in [15] and [18]. Once
obtained the internal abundances W, when solving (5), a
process of linear rectification is applied to guarantee positiv-
ity in each element, and each column in W is normalized
to add one.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we demonstrate the application of the
proposed algorithm in synthetic VNIR images [8]. To com-
pare the performance of the proposed algorithm, we imple-
mented three popular linear decomposition algorithms which
consider spatial coherence information in their formula-
tion: graph-regularized L1/2 nonnegative matrix factorization
(GLNMF) [19], preserving the intrinsic structure invari-
ant nonnegative matrix factorization (PISINMF) [7], and
nonnegative matrix factorization-quadratic minimum volume
(NMF-QMV) [20]. All the algorithms were implemented
numerically in Matlab 2018a, and on a computer with an
Intel Core i7 quad-core processor with 16 GB of RAM. In
addition, the threshold of convergence of the methods was
generally set at ε = 0.001, with a maximum number of
iterations of 20.

To test the effectiveness of the proposed method in chal-
lenging conditions, two types of noise commonly present in
HSIs were added to the synthetic images: Gaussian noise
and shot noise. In order to produce a measurement yk with
both types of noise, from a noise-less measurement y0

k, the
following mapping is applied:

yk = y0
k + nk + mk ·

√
y0
k ∀k ∈ [1,K], (7)

where nk ∈ RL and mk ∈ RL are vectors associated with
the noise components. In our approach, the Gaussian noise
vector nk has zero mean and standard deviation σSNR

k .
On the other hand, the noise component mk is related to
the induced shot noise, and is also defined by a Gaussian
distribution with zero mean and standard deviation σPSNR

k .
In our formulation, σSNR

k and σPSNR
k are defined by the

desired signal to noise ratio (SNR), and peak signal to noise
ratio (PSNR):

σSNR
k =

√
‖y0

k‖2

10
SNR
10

, σPSNR
k =

√
maxl∈[1,L](y

0
k)2l

10
PSNR

10

. (8)

The studied noise levels were (SNR,PSNR) ∈
{(20, 10), (25, 15), (30, 20), (35, 25), (40, 30), (45, 35), (50, 40)}
dB, which are challenging values for any HU method. In
addition, for each combination of SNR and PSNR, a Monte
Carlo evaluation was carried out over 50 noise realizations,
thus generating a meaningful statistic. Also, to quantify
the precision in the BLU process, the sets of estimated
end-members and abundances were defined as A and P ,
respectively, and their counterparts in the synthetic data Ā
and P̄ , and then the approximation errors were calculated

as [21]:

Ep =
1

card(P) + card(P)
min

∀p∈P,p∈P
‖p− p‖, (9)

Ea =
1

card(A) + card(A)
min

∀α̂∈A,α∈A
‖α̂−α‖. (10)

Fig. 1. One realization of the Monte Carlo estimation results (abundance
maps) for VNIR synthetic datasets (N = 3, SNR = 35 dB and

PSNR = 25 dB): A) Ground-truth, B) GLNMF, C) PISINMF, D)
NMF-QMV, and E) EBEAE-STV.

The synthetic VNIR hyperspectral image was generated
with three components (N = 3) over a spatial domain of
120 × 120 pixels (see top row in Fig. 1), with a pixel
spectral response in the range of 450 nm to 950 nm and 129
bands, as described in [8]. An exhaustive search of the hyper-
parameters of the methods GLNMF, PISINMF, and NMF-
QMV was carried out by choosing the values that generated
the least amount of abundance error. The estimation results
for one realization in the Monte Carlo evaluation with large
noise (SNR = 35 dB, PSNR = 25 dB) are shown in
the Fig. 1, where it can be seen that in general all the HU
methods produce an error in the estimated regions, however,
the results produced by EBEAE-STV correspond to a greater
extent with the ground-truth, and with a significant decrease
in the granularity, which is still visible in the comparison
methods.

Finally, the mean results of abundances errors in (10)
and end-members errors in (9) of the Monte Carlo test
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(a) Abundance Error

(b) End-member Error

Fig. 2. Monte Carlo evaluation for abundances and end-members
estimation errors in VNIR synthetic datasets (N = 3) under different

SNR and PSNR values: Comparison EBEAE-STV with state of the art
HU algorithms.

are presented in the Fig. 2. For all methods, as the noise
level (SNR,PSNR) increased, the errors (Ep, Ea) also
raised. In both plots, EBEAE-STV clearly exhibits the lowest
error, and the second lower performance is achieved by
PISINMF and NMF-QMV. On the other hand, the average
computational times (mean ± standard deviation) for each
method were 127.82 ± 3.35 s for GLNMF, 13.74 ± 0.38 s
for NMF-QMV, 5.56±0.17 s for PISINMF, and 2.40±0.16
s for EBEAE-STV. Consequently, EBEAE-STV was 56%
faster than the algorithm with the shortest execution time
among the proposals in the state of the art. Hence, EBEAE-
STV improved the comparison methodologies in terms of
estimation accuracy and computational time.

IV. CONCLUSION

In this work, we presented a new version of the EBEAE
algorithm, which considers spatial coherence by total vari-
ation techniques for the blind estimation of end-members
and abundances in hyperspectral images. Our experiments
showed that the EBEAE-STV method improves abundance
map estimates by largely eliminating the granularity caused
by noise in the measurements, and the effect of discrete
locations. Our synthetic evaluation showed that EBEAE-
STV obtains the best estimation performance with the lowest
computational time with respect to previous efforts in the
literature. In a future work, we will expand our evaluation
with other types of multi-spectral images used in the biomed-
ical engineering field, and will consider the evaluation of

experimental datasets.
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