
  

  

Abstract— EEG can be used to characterize the electrical 

activity of the cerebral cortex, but it is also susceptible to 

interference. Compared with the other artifacts, 

Electrooculogram (EOG) artifacts have a greater impact on 

EEG processing and are more difficult to remove. Here, we 

mainly compared the regression and ICA algorithms both based 

on the EOG channels for the effect of removing EOG artifacts in 

the Stroop experiment of methamphetamine addicts. From the 

perspective of time domain and power spectral density, the ICA 

algorithm based on the EOG channels is more effective. 

However, the regression algorithm based on the EOG channels 

is less complex, more time-saving, and more suitable for real-

time tasks. 

 
Clinical Relevance— For clinical purposes, this research has 

a certain reference value for selecting appropriate methods of 

removing EOG artifacts when processing the EEG of 

methamphetamine addicts. 

I. INTRODUCTION 

EEG can be used to record the electrical activity of the 
cerebral cortex, which is of great significance to the study of 
people's cognitive processes. However, both the amplitude and 
signal-to-noise ratio of the EEG are low, and EEG is 
susceptible to interferences[1]. Electrooculogram (EOG) 
artifacts are the most influential and difficult to remove among 
various artifacts. Brain activity can be severely affected by eye 
movement and blinking[2]. The easiest way to solve EOG 
artifacts is to let the subjects close their eyes to measure, but 
this may change the dynamics of the collected EEG signals[3]. 

In recent years, there have been many researches on the 
removal of EOG artifacts, but there is no uniform method. 
Among them, the independent component analysis (ICA) 
algorithm and regression algorithm are the most used 
methods[4]. ICA is a blind source separation algorithm that 
can isolate components without assuming a model[5]. ICA can 
be used not only for dimensionality reduction[6], but also for 
the classification of EEG data[7]. Besides, the ICA algorithm 
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is mainly used to remove artifacts caused by eye movement 
and blinking[8]. Fast ICA is one of the common ICA 
algorithms[9]. Although the ICA algorithm can separate 
components better, the ICA algorithm also needs to manually 
select the corresponding artifact components. The manual 
selection can cause some errors and it is difficult for beginners. 
Besides, the manual selection will waste more time. On the 
other side, the removing artifacts methods based on the 
regression algorithm are mainly used to remove the EOG 
artifacts in the recorded evoked potential[10, 11]. However, if 
the coefficients in the regression algorithm are the same, the 
result of removing artifacts is not accurate enough. Therefore, 
the coefficients in the regression algorithm need to be selected 
appropriately. In this paper, we mainly compare the difference 
between the ICA algorithm and regression algorithm based on 
the EOG channels. 

II. METHODS 

A. Recordings 

The dataset including EEG signals of 6 methamphetamine 
addicts was collected from Shanghai Mental Health Center. 
The scalp EEG recordings were collected using Brain Products 
64-channel EEG equipment at a sampling rate of 1000 Hz. It 
contained two EOG channels: the IOLeft channel and the 
IORight channel. The scalp electrodes were placed according 
to the position of the extended international 10-20 system. The 
participants involved in the experiment signed informed 
consent for the protocol approved by the Institutional Review 
Board (IRB) of Shanghai Mental Health Center, Shanghai Jiao 
Tong University School of Medicine (IRB#: 2015KY-21). 

The task in the experiment is the Methamphetamine 
Addiction Stroop Task which is mainly used to evaluate the 
attention bias of methamphetamine addicts to words related to 
methamphetamine. The words used here included two words 
related to methamphetamine and two neutral words. Each of 
the words was presented on the screen in four different colors, 
and each appeared eight times, displayed for 3000 ms. Each 
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word appeared randomly, but the word of each type of word 
meaning did not appear more than three consecutive times, and 
the possibility of the words of the two types of word meanings 
alternately appeared to a certain extent.  

Before the start of the experiment, the participants sat in a 
dark and quiet room with a display screen placed in front of 
them. When a word appeared on the screen, participants need 
to ignore the specific meaning of the word and press the button 
corresponding to the color of the word at this time. The 
markers in the EEG signals recorded in this experiment are 
mainly divided into two types. The first is to mark the meaning 
of words in the picture: it is divided into methamphetamine-
related and neutral. The second is to mark whether the right 
button is pressed. 

B. Preprocessing 

Before all the operations, we first identified the EOG 
channels. The other preprocessing steps were performed 
before removing eye movement and blinking artifacts from the 
collected EEG signals. A bandpass filter of 0.5-60 Hz was used 
to filter the EEG signals. At the same time, a 50Hz notch filter 
is used to filter out power frequency interference. Relevant 
information about the events was read from the comments. 
Because we want to compare the two methods of removing eye 
movement and blinking artifacts on the dataset, we first 
divided the epochs according to the event labels. According to 
the divided epochs, the baseline correction of epochs is 
performed to reduce the impact of data drift. 

C. Removing eye movement and blinking artifacts 

The main purpose of this experiment is to compare the 
removing EOG artifacts effects of the regression method based 
on the EOG channels and the ICA method based on the EOG 
channels. The ICA algorithm that we chose in the experiment 
was the fast ICA method. Both methods are implemented by 
the MNE library of Python 3.7. It is well known that the 
influence of the EOG signal on the EEG signal collected by 
electrodes at different positions on the scalp is different. 
Therefore, it is unreasonable to subtract the same EOG signal 
at different electrodes. A more appropriate approach is to 
estimate the propagation coefficients of electrodes at different 
positions, and subtract the EOG signals scaled according to the 
corresponding coefficients from the EEG signals collected at 
different electrode positions. The regression algorithm is based 
on this principle to correct the EEG signals.  

The fast ICA algorithm based on the EOG channels used 
in this experiment is mainly to evaluate the correlation 
between the EEG signals collected at different electrode 
positions and the signals collected by the EOG channels. It is 
common to use ICA to decompose EEG signals and observe 
and determine which are artifact components. But when there 
are many independent components, manually judging the 
artifact components is more time-consuming and less accurate. 
In this experiment, we used the fast ICA algorithm to 
decompose the EEG into a certain number of independent 
components and use the find bad EOG function to 
automatically find the independent component that is closest 
to the EOG signals, and the degree of match between each 
component and the EOG signals is measured by the calculated 
correlation score. When the score obtained exceeds a certain 
threshold, it will be judged as a component related to EOG 

artifacts. Finally, all the related EOG artifacts determined were 
removed.  

In order to compare the two methods for removing EOG 
artifacts, we mainly compared the time-domain signal, power 
spectral density, and corresponding topographical map 
distribution of the processed EEG signals. 

III. RESULTS 

In this experiment, we mainly compared two methods 
based on the EOG channels for removing EOG artifacts from 
the EEG signals collected by the Stroop experiment of the 
methamphetamine addicts. 

The method of removing EOG artifacts based on the ICA 
algorithm mainly compares the matching degree of each 
component with the EOG channels, and their matching degree 
is mainly displayed by the score. Fig.1a and Fig.1b 
respectively indicate the matching degree of each component 
with the two EOG channels, and the components whose scores 
exceed the set threshold are shown in red. It can be seen that 
the scores of the first component and the second component 

 
Figure 1.  ICA component scores. a) the ICA component scores 
related to IOLeft channel; b) the ICA component scores related 

to IORight channel. The red part shows that the score exceeds 

the threshold. 
 

 
Figure 2.  The removed ICA component properties. a) the 

topography of the removed ICA component; b) epochs image 
and ERP/ERF of the removed ICA component; c) power 

spectrum of the removed ICA component; d) epoch variance of 

the removed ICA component. 
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both exceed the threshold and they are identified as EOG 
components, which are removed in the subsequent processing. 
This is consistent with the cognition that the EOG components 
are generally important principal components, mainly because 
the EEG signal itself is relatively weak, and the EOG 
components will have a great impact. The properties of one of 
the removed ICA components are illustrated in Fig.2. The 
properties include the topography, epochs image, ERP/ERF, 
power spectrum, and epoch variance. 

Fig.3 shows the comparison between the original EEG 
signals and the EEG signals after using the two removing EOG 
artifacts algorithms. The left half shows the comparison in the 
time domain, and the right half shows the comparison of the 
power spectral density. Fig.3a shows the time-domain diagram 

of the EEG signals after other preprocessing steps except for 
the removal of EOG artifacts. The red parts show the obvious 
artifacts in the observed original EEG signals. Fig.3c and 
Fig.3e show the EEG signals after removing the EOG artifacts 
using the regression algorithm and the fast ICA algorithm 
respectively. The red parts correspond to the parts with 
obvious artifacts in Fig.3a. 

From the left half of Fig.3, it is not difficult to find that the 
two algorithms for removing EOG artifacts have achieved 
good results, and the obvious artifacts have been removed. 
Besides, we can find that the ICA algorithm based on the EOG 
channels has a better effect in removing EOG artifacts, and the 
EEG signals processed by the ICA algorithm are smoother. 

 
Figure 3.  The comparison between the original EEG signals and the EEG signals after using the two removing EOG artifacts algorithms. a) and 

b): the time domain and power spectral density of original EEG signals; c) and d): the time domain and power spectral density of EEG signals 

after removing EOG artifacts by regression algorithm; e) and f): the time domain and power spectral density of EEG signals after removing EOG 
artifacts by fast ICA algorithm. 

 
Figure 4.  The comparison of the topographic maps of the power spectral density. a) the topographic map of the power spectral density of original 
EEG signals; b) the topographic map of the power spectral density of EEG signals after removing EOG artifacts by regression algorithm; c) the 
topographic map of the power spectral density of EEG signals after removing EOG artifacts by fast ICA algorithm. 
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The right half of Fig.3 mainly shows the comparison of 
power spectral density. The shaded parts in each figure 
represent the power spectral density values of the EEG signals 
of different channels, forming a range, and the black solid lines 
part in the middle represent their average value. Regardless of 
the EEG signals processed by the regression algorithm or the 
EEG signals processed by the ICA algorithm, their power 
spectral density is significantly reduced in the low-frequency 
part, but the difference in the high-frequency part is not very 
significant. Whether it is the original signal or the EEG signal 
processed by the two algorithms, the power spectral density of 
their high-frequency part is lower than that of the low-
frequency part. Comparing the two algorithms, compared with 
the regression algorithm, the changing trend of the power 
spectral density of the EEG signal processed by the ICA 
algorithm is more stable. Also, the power spectral density of 
the EEG signal processed by the regression algorithm 
fluctuates significantly around 50 Hz, which does not match 
the trend of the original data.  

Fig.4 mainly shows the brain topographic maps of the 
normalization of the power spectral density of the five 
frequency bands: delta (0-4Hz), theta (4-8Hz), alpha (8-12Hz), 
beta (12-30Hz), and gamma (30-45Hz). It is not difficult to 
find from the figure that regardless of the frequency band, the 
distribution of the brain topographic map of the power 
spectrum density of EEG after artifacts removing is roughly 
the same as the distribution of the original EEG. The brain 
topographic map of the processed data is significantly 
weakened in the delta frequency band, but significantly 
enhanced in the beta and gamma frequency bands. Among 
them, the EEG signals after processing by the ICA algorithm 
have more significant changes in the beta band. 

Although the right half of Fig.3 has compared the power 
spectral density of the original data and the data processed by 
the two algorithms, the comparison may not be obvious 
because they are displayed separately. The comparison of the 
logarithmic mean value of the power spectral density is 
demonstrated in Fig.5. The changing trend shown in Fig.5 is 
consistent with it shown in the right half of Fig.3. 

IV. DISCUSSION AND CONCLUSION  

Through the comparison of the time domain and power 
spectral density of the original EEG signal and the EEG signal 
after removing EOG artifacts, it can be found that the fast ICA 
method and the regression method both have removed the 
artifacts, and obtained higher quality EEG. Judging from the 

brain topographic maps of the power spectrum density, the 
EEG data processed by the fast ICA algorithm based on EOG 
channels showed significant enhancement in both the beta 
band and the gamma band. When the methamphetamine 
addicts are completing the task, they are visually stimulated 
and their attention is highly concentrated at this time, so the 
beta and gamma signals are in the main position at this time. 
In this regard, the effect of using the fast ICA algorithm to 
remove artifacts is better than that of the regression algorithm. 
At the same time, the power spectral density of the EEG data 
processed by the regression algorithm fluctuates significantly 
around 50 Hz. In terms of the degree of conformity with the 
original data, the effect of the ICA algorithm is even better. 

From the effect of the time-domain diagram, EEG 
processed by the ICA algorithm based on EOG channels is 
smoother. Besides, the power spectral density of EEG 
processed by the fast ICA algorithm is obviously enhanced in 
the high-frequency band. From the two aspects, the ICA 
algorithm has the better effect. However, in terms of algorithm 
complexity and computing time, the regression algorithm is 
better. The difference in the effects of the two algorithms is not 
particularly large. When real-time tasks are required, it is 
better to choose the regression algorithm. These two 
algorithms realize automatic artifact removal without the 
manual screening of EOG artifacts, which are promising to 
reduce the workload and error rate in clinic. At the same time, 
although the two algorithms have achieved good results on this 
dataset, it does not mean that these two algorithms can be 
commonly used on other datasets. The versatility of these two 
algorithms needs further exploration. 
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spectral density 
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