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Abstract— This paper proposes a new generative probabilistic
model for phonocardiograms (PCGs) that can simultaneously
capture oscillatory factors and state transitions in cardiac
cycles. Conventionally, PCGs have been modeled in two main
aspects. One is a state space model that represents recurrent
and frequently appearing state transitions. Another is a factor
model that expresses the PCG as a non-stationary signal
consisting of multiple oscillations. To model these perspectives
in a unified framework, we combine an oscillation decom-
position with a state space model. The proposed model can
decompose the PCG into cardiac state dependent oscillations
by reflecting the mechanism of cardiac sounds generation
in an unsupervised manner. In the experiments, our model
achieved better accuracy in the state estimation task compared
to the empirical mode decomposition method. In addition, our
model detected S2 onsets more accurately than the supervised
segmentation method when distributions among PCG signals
were different.

Index Terms— Phonocardiogram, heart sound segmentation,
state space model, oscillation decomposition, variational infer-
ence

I. INTRODUCTION

Heart sounds are an important source of information to
examine patients’ cardiovascular status. A phonocardiogram
(PCG), an electric recording of heart sounds, generally
reflects various kinds of heart activities and has been used for
heart disease detection. Many studies have tried to construct
automatic heart sound analysis, but heart auscultation and its
interpretation still largely depends on doctors’ subjectivity.

The PCG has the following two features. First, it has a
periodic structure comprising a small number of states and
transitions among them. The heart repeatedly contracts and
dilates to pump blood throughout the body. This cardiac cycle
is mainly divided into four periods; the first heart sound (S1),
systole period, second heart sound (S2), and diastole period.
Second, the heart sound is composed of several factors that
are attributable to their individual sources. S1 and S2 sounds
originate from valve vibrations inside the heart: S1 comprises
mitral and tricuspid valve closure, and S2 comprises aortic
and pulmonary valve closure. Therefore, the heart sound can
be viewed as a non-stationary signal consisting of multiple
oscillations originated from valve vibrations.

These features have been used extensively in signal pro-
cessing and machine learning methods for PCGs [1]. In the
following, we briefly review previous research.
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Fig. 1. Illustration of oscillation representation under our model. We
distinguish four cardiac states: S1, systole, S2, and diastole (green). There
are multiple hidden oscillations called intrinsic mode functions (IMFs)
induced by valve closures, and their amplitude changes depending on
the cardiac states (red). According to an idealized physical model for
valve vibrations [2], we express the hidden oscillations as a second order
autoregressive system. The PCG is observed as the summation of those
oscillations (blue).

The state space models have been used for expressing
cardiac state transitions, including hidden Markov mod-
els [3], [4], [5], [6], hidden semi Markov models [7],
[8] and switching linear state space models [9]. On the
other hand, the factorization representations have also been
used for capturing latent factors from heart sounds, such
as non-negative matrix factorization (NMF) [10], [11] and
empirical mode decomposition (EMD) [12], [13], [14]. Other
approaches have been studied, including frequency based
features [15], [16], auto-correlation functions [17], [18],
Shannon energy [19], and deep neural networks [20], [21],
[22].

Recently, empirical mode decomposition (EMD) and its
extensions have been considered as a promising direction of
research in this field. EMD decomposes a one-dimensional
signal into a sum of oscillations, called intrinsic mode func-
tions (IMFs). Therefore, it has been expected to extract the
non-stationary multiple oscillations from the valve vibrations
in a data driven manner.

However, EMD has some limitations. First, it suffers from
a mode mixing problem [23], which results in the loss of
IMFs’ physical meaning. Second, since EMD is calculated
in a heuristic manner, incorporating generative mechanisms,
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or knowledge about the heart, into decomposition is dif-
ficult. Third, the EMD-based methods are limited to one-
dimensional PCG. During diagnosis, doctors change stetho-
scope locations on patients to obtain detailed information
about heart activities and detect the sound propagation direc-
tion of abnormal heart sounds. Hence, extracting oscillation
components shared by multidimensional PCG may be useful
for diagnosis, though EMD has not been used for such signal
analysis.

This paper aims to obtain natural oscillation representation
for PCGs with a generative model. To this end, we construct
a generative probabilistic model for PCGs unifying the
following approaches: (1) a state space model that expresses
cardiac state transitions and oscillations with uncertainty,
and (2) EMD that gives useful factored representations. The
existing EMD-based methods (e.g. [13], [14]) decompose
PCG into multiple oscillations without considering the state
transition structure. Thus, the amplitude of the obtained
oscillations does not align with cardiac state transitions.
The proposed model expresses oscillations and cardiac state
transitions simultaneously so that it provides more natural
oscillation representations well-aligned with cardiac states.

The main contributions of this paper are as follows.
• We propose a state space model with EMD-based factor

representation for PCGs newly introducing a physi-
cal generation mechanism to simultaneously capture
oscillatory factors and state transitions in the cardiac
cycle. Our model definition can take advantage of multi-
channel PCGs recorded with multiple microphones.

• We derive a tractable evidence lowerbound based on the
black box structured variational family [24] for param-
eter estimation. This lowerbound reduces the number of
parameters to be estimated.

II. THE PROPOSED MODEL

A. Model definition

Consider that PCG signals with length R are simulta-
neously observed at D microphones and denote as xr ∈
RD, r = 1, 2, . . . , R. For notational simplicity, we denote
a concatenate of multiple variables along time indices as
x1:R = {xr}Rr=1.

We assume that the PCG is a summation of multiple
random oscillations, each of which depends on the hidden
cardiac states. Specifically, we adopt the switching linear
state space representation to express the PCG. Figure 1 shows
an overview of our model.

First, we introduce the notion of state transitions into the
cardiac cycle. Let zr be a hidden state of the PCG signals
on the r-th timestep. We suppose zr ∈ {1, 2, 3, 4}, which
we expect to correspond to the four states of the cardiac
cycle, i.e., S1, systole, S2, and diastole. Each state (e.g., S1)
stays in the current state or only moves to a particular state
(e.g., systole). Additionally, the duration in the current state
is considered to be independent of each other in each state.
To achieve them, we define the transition probability as

p(zr:r+δ−1 = j, zr+δ ̸= j | zr = i) = Aijpj(δ), (1)

where A = [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0]] is a
transition matrix and pj(δ) is a duration distribution in state
j. For the duration distribution, we choose a negative bino-
mial distribution with a success probability θi, i = 1, . . . , 4
and a fixed shape parameter m

pi(δ) =

(
δ +m− 2
δ − 1

)
(1− θi)

mθδ−1
i , δ = 1, 2, . . . ,

to use the following HMM embedding technique [25]. Let
er ∈ {1, · · · ,m} be pseudo states and define augmented
states z̄r = (zr, er). Then, there is a transition probability
matrix Ā over z̄r that holds

p(z1:R) =
∑
er

p({(zr, er)}Rr=1) =
∑
er

p(z̄1:R).

The summation is taken over all pseudo state sequences. This
relation implies that the posterior of z̄r can be calculated in
an HMM manner, and marginalizing it over er gives the
posterior of zr. This embedding reduces the computational
cost of calculating posterior probabilities from O(R2) to
O(R).

Next, we introduce a random oscillation model into the
PCGs. As we mentioned in Introduction, S1 and S2 sounds
originate from valve vibrations inside the heart. Previous re-
search attempted to represent those oscillations with dynam-
ical systems [26], [27], [28]. The center of the left column in
Figure 1 shows the membrane displacement model [2] that
approximates the aortic valve dynamics. At the beginning of
the diastole period, the blood pressure on the aortic valve
instantaneously increases. This pressure increase induces the
membrane vibrations, which decay exponentially according
to the damping parameter of this membrane. This situation
can be expressed as the differential equation

Mü+ Cu̇+Ku = ∆P,

where u is the membrane displacement, ∆P is a blood
pressure on the membrane, M is a mass of vibration, C
is a damping factor, and K is a stiffness factor. The solution
of this differential equation becomes a damped oscillation

u(t) ∝ exp(−αt) sin(ωt− ψ).

Using this solution and the proportionality relation between
the amplitude of the PCG and the velocity u̇, we can assume
that the hidden damped oscillation induced by the valve
closure is expressed as a second order autoregressive model.
Let yrl = (y

(1)
rl , y

(2)
rl ) ∈ R2, r = 1, . . . , R be coordinates

of analytic signal representation of the l-th oscillation and
define its dynamics given zr = i as(

y
(1)
rl

y
(2)
rl

)
= al

(
cos( 2πflfS

) sin( 2πflfS
)

− sin( 2πflfS
) cos( 2πflfS

)

)(
y
(1)
r−1,l

y
(2)
r−1,l

)

+

(
v
(1)
rli

v
(2)
rli

)
,

(
v
(1)
rli

v
(2)
rli

)
∼ N

(
0, σ2

liI
)
, (2)

where al and fl are a decay coefficient and a mean frequency
of the l-th oscillation, respectively, and fS is a sampling
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frequency. We here emphasize that variances σ2
li should vary

depending on the hidden states, which reflects the changes
of dominant oscillation in PCG according to the cardiac
states. The larger system variances σ2

li means that the l-th
oscillation is dominant in the state i. Note that the projection
of yrl, r = 1, . . . , R onto the first coordinate corresponds
to an IMF in EMD based methods. Hereafter, we denote
yr = (y

(1)
rl , y

(2)
rl , . . . , y

(1)
rL , y

(2)
rL ).

PCG signals are summations of multiple oscillations fil-
tered according to the relative distance and the internal body
structure between the heart sound sources and mics. For
simplicity, we assume that the observed PCG signals are
expressed as the summations of the oscillations multiplied
by the microphone-specific weights:

xr =


1 0 · · · 1 0

g
(1)
21 g

(2)
21 · · · g

(1)
2L g

(2)
2L

...
. . .

...
g
(1)
D1 g

(2)
D1 · · · g

(1)
DL g

(2)
DL




y
(1)
r1

y
(2)
r1
...

y
(1)
rL

y
(2)
rL

+ wr,

wr ∼ N(0, τ2I). (3)

Similar state space representations have been used for in-
stantaneous phase estimation [29], [30]. Our model includes
them as a special case: when σ2

l1 = σ2
l2 = σ2

l3 = σ2
l4,

our model reduces to the linear Gaussian state space model
without hidden state transitions in these studies.

B. Parameter estimation

We begin with a rough sketch of our Bayesian inference
method. Our goal is to estimate model parameters maximiz-
ing the log marginal likelihood given observations. However,
our model does not lead to a closed form expression for
the marginal likelihood. Thus, we use a variational inference
with the structured black-box variational family [24]. We
devise a neural network that approximates the relationship
between observations and hidden states directly. Adopting
such an inference network reduces the number of parameters,
which leads to a simple implementation and good practice
mixing.

The key idea of variational inference is to approximate the
posterior and the marginal likelihood through optimization.
We first introduce variational posterior q(y1:R, z̄1:R) to obtain
the lowerbound for the log marginal likelihood [31]:

log p(x1:R)

≥ Eq(y1:R,z̄1:R)

[
log

p(x1:R | y1:R)p(y1:R | z̄1:R)p(z̄1:R)
q(y1:R, z̄1:R)

]
,

where p(x1:R | y1:R) is the observation model (3), p(y1:R |
z̄1:R) is the system model (2) and p(z̄1:R) is the prior distri-
bution (1). This lowerbound is called evidence lowerbound
and the equality holds when q(y1:R, z̄1:R) equals to the true
posterior p(y1:R, z̄1:R | x1:R). Instead of maximizing the log
marginal likelihood, we maximize this evidence lowerbound

with respect to model parameters and the variational poste-
rior.

The variational posterior q(y1:R, z̄1:R) should be a good
approximation for the true posterior and should be easy to
calculate the expectation. To satisfy these requirements, we
first impose independence assumption as q(y1:R, z̄1:R) =
q(y1:R)q(z̄1:R). Under this assumption, the variational pos-
terior q(y1:R) maximizes the lowerbound is uniquely deter-
mined and the evidence lowerbound reduces to

log p(x1:R) ≥ log ρ(x1:R) + Eq(z̄1:R)

[
log

p(z̄1:R)

q(z̄1:R)

]
, (4)

where

ρ(x1:R)

=

∫
p(x1:R | y1:R) exp

(
Eq(z̄1:R) [log p(y1:R | z̄1:R)]

)
dy1:R.

Note that ρ(x1:R) is not a normalized density function.
Derivation of this lowerbound is shown in Appendix.

Then, we define q(z̄1:R) as the following structured ex-
pression:

q(z̄1:R) ∝ p(z̄1)

R∏
r=2

p(z̄r | z̄r−1)

R∏
r=1

ψ(z̄r, x1:R).

This variational posterior depends on the parameters in the
state transition model (1) and the oscillation model (2),
as well as on the newly introduced part ψ(z̄r, x1:R). This
ψ(z̄r, x1:R) is the r-th node potential that provides proba-
bilistic guess at each hidden state inferred from observations
x1:R. To capture the complex dependence between z̄r and
x1:R, we adopt a neural network for ψ(z̄r, x1:R). In the
following experiment, we define this ψ as

ψ(z̄r = (i, δ), x1:R) = [ϕ(xr−s+1:r)](i,δ), (5)

where ϕ(·) is a neural network that maps xr−s+1:r ∈ Rsd

to ϕ(xr−s+1:r) ∈ R4×m
+ , s is a fixed window length, and

[·](i,δ) is an operator that returns the (i, δ)-th element of the
input vector. The possible choice for this ϕ is a convolutional
neural network (CNN). With CNN, the node potential first
calculates the dominant sound features in the window [r−s+
1, r] and then converts them into a probabilistic guess about
the location of this window relative to cardiac cycles. Other
candidates for ψ are specific structured neural networks used
for heart sound segmentation in a supervised manner (e.g.,
CNN [32] and RNN [33], [34]). The prior distribution p(z̄1)
and p(z̄r | z̄r−1), r = 2, . . . , R connects neighboring node
potentials in Markov manner.

With this variational posterior, the lowerbound (4) is easy
to be calculated by utilizing message-passing algorithms. The
first term can be expressed as a closed form by using the
Kalman filter. The expectation with respect to q(z̄1:R) needs
marginal posterior q(z̄r), r = 1, . . . , R and q(z̄r−1, z̄r), r =
2, . . . , R, and these terms can also be calculated by using the
forward-backward algorithm for hidden Markov models. In
addition, introducing the noise ratio parameters σ̃2

li = σ2
li/τ

2,
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and considering maximization with respect to σ̃2
li instead

of σ2
li, we obtain a closed form solution for τ2 [35]. This

replacement reduces the number of parameters to be etimated
and makes estimation more stable.

In the estimation step, we maximize the
lowerbound (4) with respect to the model parameters
({θi}, {al}, {fl}, {σ̃li}, {gdl}) and variational parameters in
the node potential function ψ by using gradient ascent. The
computational cost for calculating the objective function in
each step is O(R).

Structured black box variational families have been used
for approximate inference in hierarchical state space models.
For example, [36] chose a structured black box Gaussian
family for variational posterior q(y1:R) and calculated the
evidence lowerbound with Monte-Carlo sampling. The main
difference relative to such work is that the inference network
in our method directly connects bottom hidden states and
observations. This formulation provides the closed form
evidence lowerbound, and we need not carry Monte-Carlo
sampling for it.

III. APPLICATIONS AND EXPERIMENTS

Since our proposed model can be fitted to the observed
PCGs in an unsupervised manner, it could potentially be
applied to a variety of applications, including anomalous
sound detection and disease prediction, combined with other
machine learning methods. As a telling example, this paper
demonstrates the usefulness of the proposed model by taking
one of the most fundamental applications, the heart sound
segmentation task.

Approaches for the heart segmentation task are mainly
divided into two ways: supervised and unsupervised ap-
proaches. Supervised approaches use human-annotated labels
or reference ECG signals for model training and outputs the
cardiac state labels for other PCG signals. On the other hand,
unsupervised approaches use only PCG signal for model
training and outputs cardiac state labels simultaneously.
Supervised approaches generally achieve better segmentation
performance compared to unsupervised approaches. How-
ever, their use is limited to the case where the training labels
are given and the distributions of training and test signals are
consistent.

Heart sound segmentation under our model is classified
as an unsupervised approach. Our model can handle the
difference in the distributions of PCG signals and does not
require cardiac state labels for training. In the experiments,
we compared our model to the existing unsupervised heart
sound segmentation based on EMD decomposition. We also
compared our model to LR-HSMM, the state art of super-
vised heart sound segmentation method.

A. Datasets

Five datasets were used for this experiment. The first and
the second ones were normal and abnormal PCG signals
under various kinds of symptoms attached to auscultation
textbooks [37], [38]. In total, these datasets contain 119
signals. The onsets of S1 were annotated manually. Figure 2

Fig. 2. Examples of PCG signals attached to auscultation textbooks [37],
[38] in datasets (a) and (b). (Top) Normal. (Bottom) Mitral regurgitation.

shows examples of PCGs in these datasets. We denote these
datasets as (a) and (b). The third one was a heart sound signal
obtained from one of the authors with a microphone. The
onsets of S1 and S2 were annotated by hand. We denote it as
(c). The fourth one was a 2016 PhysioNet/CinC dataset [1],
[39]. This dataset contains simultaneously recorded PCG and
ECG signals. PCG signals in this dataset were divided into
normal and abnormal heart sounds: normal sounds were from
healthy subjects and abnormal sounds were from subjects
with certain cardiac diseases. We denote it as (d). The last
one was a multidimensional PCG signal measured at two
microphones simultaneously. We denote it as (e).

B. Comparing methods

We chose the ensemble empirical mode decomposition
method with a kurtosis feature [14] for comparison. Here-
after, we denote this method as EEMD. The assumption
that multiple oscillations exist in PCGs also holds in this
approach.

In EEMD, we first apply an ensemble version of EMD
to the observed signals to extract IMFs [23]. During S1 and
S2, the amplitude of each IMF instantaneously increases. To
detect this increase, we calculated kurtosis values from IMFs
using a sliding window. If the window contains the onsets
of S1 and S2 sound, the marginal distribution of values in
this window becomes heavy-tailed and its kurtosis grows.
Therefore, finding peaks of the product of the kurtosis values
along IMFs and different scale windows gives the estimates
of S1 and S2 onsets.

LR-HSMM expresses PCG signals as hidden semi Markov
model with logistic observation model. Parameters of this
model should be estimated from training PCG signals and
true cardiac labels beforehand in a supervised manner.

C. Procedure and evaluation

For datasets (a), (b), and (c), we first down-sampled all
the PCGs to 2,000 Hz and applied a band-pass filter with
cut off frequencies of 10 Hz and 150 Hz. Then, we applied
our model and EEMD to those signals. Although the noise
levels were different among the signals and the datasets, we
used the same hyperparameter values to test the robustness of
the two methods. In our model, we define the node potential
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(a) Our model (b) EEMD
Normal

(a) Our model (b) EEMD
Mitral regurgitation

Fig. 3. Examples of oscillation decomposition and heart sound segmenta-
tion results with our model and EEMD. The blue lines indicate input PCG
signals and the red lines indicate the obtained oscillations. The red bands
show the 95% credible intervals with our model. The dashed lines indicate
the estimated onsets and offsets of S1 and S2. (Top) Normal. (Bottom)
Mitral regurgitation.

ψ(z̄r, x1:R) as (5) and adopted a two-layer convolutional
neural network for ϕ(xr−s+1:r).

To compare unsupervised and supervised segmentation
approaches, we applied our model and LR-HSMM to dataset
(d). We first divided the dataset into 50 pairs of normal
heart sounds and abnormal heart sounds. In LR-HSMM,
we estimated parameters from the 40 second normal heart
sounds and the cardiac labels, and decomposed 10 second
abnormal heart sounds using the estimated parameters. In
our model, we shared the convolutional neural network in
ψ(z̄r, x1:R) among PCGs and decomposed these normal and
abnormal PCGs simultaneously. Accuracy was calculated
from the segmentation results of abnormal heart sounds.

We judged that S1 and S2 onsets are correctly estimated
if the estimated onset and the ground-truth onset are located
within the 100 millisecond interval. To evaluate the segmen-
tation performance objectively, we calculated the F1 score:

F1 =
2× P+ × Se

P+ + Se
,

where P+ and Se are precision and recall respectively.

TABLE I
ACCURACY OF S1 AND S2 DETECTION. THE NUMBERS OF S1 AND S2

(N), TRUE POSITIVES (TP ), FALSE POSITIVES (FP ), FALSE NEGATIVES

(FN ) AND F1-SCORES ARE LISTED.

N TP FP FN F1(%)

(a) S1
Our model 1089 703 459 386 62.46

EEMD 488 365 601 50.26

(b) S1
Our model 2002 1660 464 342 80.47

EEMD 1171 582 831 62.37

(c)
S1

Our model 1709 1660 87 49 96.06
EEMD 1399 127 310 86.49

S2
Our model 1719 1681 86 38 96.44

EEMD 1678 517 41 87.24

(d)
S1

Our model 600 546 49 54 91.38
LR-HSMM 586 16 14 97.50

S2
Our model 587 504 90 83 85.35
LR-HSMM 453 135 134 77.11

D. Results

Figure 3 shows a typical example of segmentation results
for normal and abnormal PCG obtained with our model and
EEMD. Although both methods detected roughly the same
S1 and S2 sections in these signals, the obtained IMFs are
different. That is, the amplitudes of IMFs rapidly increase in
S1 and S2 intervals in the proposed method, compared with
the IMFs obtained with EEMD. This is because our model
utilizes the cardiac state transition structure in its oscillation
model.

Table I lists the accuracy of S1 and S2 onset detection.
This table shows that our model estimated S1 and S2 more
accurately than EEMD for all three datasets. The accuracy
of both methods for the datasets (a) and (b) were relatively
lower than the dataset (c). This is because the datasets (a)
and (b) contain abnormal PCG signals that are difficult to
divide into four states. We also experienced that it was not
straightforward to optimize the multiple hyperparameters in
the EEMD case. For example, the number of the oscillations,
the length of the sliding windows, and the detection threshold
must be determined in advance but highly affect the seg-
mentation results. The results obtained from the dataset (d)
show the difference in segmentation between unsupervised
and supervised approaches. LR-HSMM detected S1 onsets
better than our model, whereas our model detected S2 onsets
more accurately than LR-HSMM. This is because the shapes
of S2 differ between normal and abnormal heart sounds
compared to S1, and the assumption that training and test
signals distribute to the same distribution does not hold in S2
intervals. In our model, parameters other than the inference
network are estimated separately for each PCG, which allows
us to capture the differences in S2 sounds. On the other hand,
LR-HSMM reduced false positives and false negatives in S1
detection since S1 sounds have similar shapes and amplitudes
between training and test signals.

Figure 4 shows an oscillation decomposition example
obtained from (e). Our model can extract hidden oscillations
shared by multiple signals measured at different micro-
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Fig. 4. An example of oscillation decomposition obtained from a two
dimensional PCG. The blue lines indicate the row signals, the red lines
indicate the obtained oscillations with 95% credible intervals, and the green
line indicates the estimated label.

phones. We believe that using multidimensional PCG signal
improves the oscillation estimation accuracy and gives clues
about the location of the heart sound source, and such local
analysis is very useful for understanding and analyzing the
three-dimensional cardiac activity.

IV. CONCLUSIONS

We proposed a new generative probabilistic model for
multidimensional PCGs. The proposed model can simultane-
ously capture oscillatory factors and the cardiac state transi-
tions. This model is inspired by the oscillation decomposition
representation [29], [30]. We extended this representation
to the case of non-stationary signals, combining it with
the hidden semi-Markov model, and introduced the physical
generation mechanism of PCG for increased resolutions of
the analysis. To derive the tractable evidence lowerbound
for Bayesian inference, we adopted the structured black box
variational family that directly connects hidden states and
observations.

The experiments showed that the proposed model achieved
better performance than the EMD-based method in the heart
sound segmentation task. Compared to the supervised seg-
mentation method, the proposed model was able to detect S2
onsets more accurately when the distributions of PCG signals
were different. We also demonstrated that the improved
resolution in the proposed method is useful for the analysis
of multi-channel PCGs observed with multiple microphones.
We believe that the proposed method can be a useful tool
for spatiotemporal monitoring of cardiac activity using only
inexpensive and convenient devices. We plan to discuss this
point quantitatively in future work.

APPENDIX

A. Derivation of the evidence lowerbound

We here derive the evidence lowerbound (4). The evidence
lowerbound under the variational posterior q(y1:R)q(z̄1:R)

can be expressed as

Eq(y1:R)q(z̄1:R)

[
log

p(x1:R | y1:R)p(y1:R | z̄1:R)p(z̄1:R)
q(y1:R)q(z̄1:R)

]

= Eq(y1:R)

[
log p(x1:R | y1:R) + Eq(z̄1:R) [log p(y1:R | z̄1:R)]

− log q(y1:R)

]
+ Eq(z̄1:R)

[
log

p(z̄1:R)

q(z̄1:R)

]
= log ρ(x1:R)−KL(q(y1:R)||ρ(y1:R | x1:R))

+ Eq(z̄1:R)

[
log

p(z̄1:R)

q(z̄1:R)

]

≤ log ρ(x1:R) + Eq(z̄1:R)

[
log

p(z̄1:R)

q(z̄1:R)

]
.

Here,

ρ(x1:R)

=

∫
p(x1:R | y1:R) exp

(
Eq(z̄1:R) [log p(y1:R | z̄1:R)]

)
dy1:R,

ρ(y1:R | x1:R)

=
p(x1:R | y1:R) exp

(
Eq(z̄1:R) [log p(y1:R | z̄1:R)]

)∫
p(x1:R | y1:R) exp

(
Eq(z̄1:R) [log p(y1:R | z̄1:R)]

)
dy1:R

,

and KL(q(y1:R)||ρ(y1:R | x1:R)) is the Kullback-Leibler
divergence between q(y1:R) and ρ(y1:R | x1:R). The last
equality holds when q(y1:R) = ρ(y1:R | x1:R). Hence, the
maximization of the left hand side of this inequality with
respect to q(y1:R) and q(z̄1:R) reduces to the maximization
of the right hand side with respect to q(z̄1:R). This concludes
the derivation of (4).
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