
  

 

Abstract— Objective and accurate activity identification of 

physical activities in everyday life is an important aspect in 

assessing the impact of various post-stroke rehabilitation 

therapies and interventions. Since post-stroke hemiparesis 

affects gait and balance in individuals with stroke, activity 

identification algorithms that consider stroke-specific movement 

irregularities are needed. While wearable physical activity 

monitors provide the means to detect activities in the free-living, 

algorithms using their data are specific to the wear location of 

the device. This pilot study builds, validates, and compares three 

machine learning algorithms (linear support vector machine, 

Random Forest, and RUSBoosted trees) at three popular wear 

locations (wrist, waist, and ankle) to identify and accurately 

distinguish mobility-related activities (sitting, standing and 

walking) in individuals with chronic stroke. A total of 102 

minutes of data from two lab visits of three-stroke participants 

was used to build the classifiers. A 5-fold cross-validation 

technique was used to validate and compare the accuracy of 

classifiers. RUSBoosted trees using data from waist and ankle 

activity monitors, with an accuracy of 99.1%, outperformed 

other classifiers in detecting three activities of interest.  

 
Clinical Relevance— One of the major aims of post-stroke 

rehabilitation is improving mobility, which may be facilitated by 

understanding the structure and pattern of everyday mobility 

through real-world, objective outcomes. Accurate activity 

identification, as shown in this pilot investigation, is an essential 

first step before developing objective outcomes for monitoring 

mobility and balance in everyday life of these individuals.  

I. INTRODUCTION 

About 7 million Americans suffer from stroke annually [1]. 
With the advancement in health-care, the majority of these 
individuals survive a stroke but live with prolonged disability 
in the community [2]. Globally, stroke is the third leading 
cause of disability, and 65% of stroke survivors report 
restrictions in activities associated with community 
reintegration even during the chronic phase (> 6 months) of 
stroke [3]. Mobility and balance limitations persist in the 
chronic phase post-stroke, which limits the activity and 
participation of post-stroke individuals in the community [3-
5].  One of the major goals of post-stroke rehabilitation is 
known to help improve mobility and balance [6-7] and 
improve functioning in everyday life in the community. Many 
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rehabilitation interventions are being developed with an aim to 
improve mobility in individuals with stroke as mobility is a 
critical aspect of community integration [8]. The goal of 
improving mobility may be best understood by, first, 
understanding the structure and pattern of everyday mobility 
in the community, and second, evaluating the true impact of 
any clinical intervention on mobility outside the clinic, i.e., in 
the community. However, both of the aforementioned 
approaches require objective and accurate detection of 
mobility-related activities (sitting, standing, physical activity, 
etc.) in everyday life. 

With technology advancing tremendously over the last 
decade, wearable devices have provided the means to 
accurately, objectively, and continuously track mobility [9]. 
Various signal processing and machine learning (ML) 
algorithms have been developed to identify activities of 
everyday life using the raw data from wearable devices [10]. 
However, these algorithms are specific to the movement 
patterns of individuals and, therefore, are population-specific 
[11]. Individuals with stroke suffer from hemiplegia, which 
affects their balance and mobility patterns. Mechanisms of 
walking after stroke are often characterized by reduced speed, 
kinematic, temporospatial, and neuromuscular asymmetry, 
and postural instability [12]. As stroke-gait is different from 
healthy individuals, the algorithms developed for other 
populations are not accurate for slow speed and asymmetrical 
gait, as is typical in individuals with stroke [13]. Therefore, 
activity identification algorithms specific to individuals with 
stroke are needed. There is limited research for activity 
identification in individuals with stroke, with research 
primarily focusing on identifying upper extremity movement 
or identifying step count during walking [14, 15]. Further, the 
accuracy of activity identification algorithms using raw data 
from the wearable devices is also specific to the wear location 
of the device [15]. However, neither a popular wear location 
chosen by the users nor an accurate wear location identified 
through research for activity identification in post-stroke 
individuals is provided in the literature. 

The goal of this investigation is to accurately and 
objectively identify the three basic activities related to 
mobility - standing, sitting, and walking, in everyday life using 
raw data from wearable devices in a laboratory setting. The 
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second objective is to compare the accuracy of activity 
identification algorithms at three popular wear locations – 
ankle, waist, and wrist, for individuals with chronic stroke. We 
hypothesized that the waist would be a better wear location in 
terms of accuracy for activity identification compared to the 
wrist and ankle locations. The rationale is that the waist is 
closer to the center of mass of the body, and therefore, the 
measurements from the waist may be more stable and 
reflective of total body movement. 

II. METHODS 

A. Participants 

All study procedures presented in this paper involving 
human subjects were approved by the Institutional Review 
Board. Three participants who were in the chronic phase post-
stroke (>6 months) and were medically stable (defined as no 
changes in medication) for at least three months prior to the 
start of the study were recruited. All participants had 
hemiplegia affecting one side of their body but were able to 
walk at least 10 meters with minimal or no support. 
Hemiplegia was defined as paralysis affecting only one side of 
the body and was diagnosed by the subjects’ treating physician 
at the time of injury. 

Two female participants and one male participant aged 60, 
63, and 64 years respectively were recruited for the study. The 
64-year-old male and 60-year-old female participants had right 
hemiplegia, while the 63-year-old female participant had left 
hemiplegia. Participants’ demographics and functional 
assessment scores at visit 1 are presented in Table 1 and reflect 
on the functional ability of each participant.  

TABLE I.  PARTICIPANT DEMOGRAPHICS AND FUNCTIONAL 

ASSESSMENTS 

B. Assessments 

During two in-lab visits which were one week apart, 
participants wore three ActiGraph GT9X Link (ActiGraph, 
Inc., FL, USA) physical activity monitors (PAM), one each on 
the non-affected ankle, non-affected wrist and waist. The 
ActiGraph GT9X Link is a popular research-grade PAM and 
FDA-approved class II medical device in the United States. It 
is worn using accessories (i.e., Velcro ankle straps, a waist belt 
with buckle, and a wrist band). The PAM collects movement 
(accelerometer) data without any identifiable information.  
The three wear locations (ankle, waist, and wrist) selected in 
this study are popular PAM wear locations in stroke research 
[16, 17]. All three PAM (ankle, waist, and wrist) were set-up 
to record tri-axial accelerometer data at 30 Hz. While wearing 
the PAM, participants performed a battery of functional 
assessments and completed a mobility course consisting of 
standing, sitting, walking, and going up/down stairs. 
Functional assessments included Berg Balance Scale (BBS) 

[18], Timed-Up-and-Go (TUG) score [19], 10-meter walk test 
(10MWT) [20], 6-minute walk test (6MWT) [20], community 
balance and mobility scale (CBMS) [21] and Trunk 
Impairment Scale (TIS) [22]. The BBS assesses static and 
dynamic balance, the TUG assesses mobility and risk of falls, 
the 10MWT assesses walking speed, the 6MWT assesses 
endurance, the CBMS assesses postural instability that limits 
community engagement in ambulatory individuals, while TIS 
assesses motor impairment of the trunk. All these functional 
assessments are clinical standards and validated measures that 
are typically used to assess mobility and balance in individuals 
with stroke. All assessments and activities were video-
recorded for both visits for all participants. 

C. Data Analysis 

Feature Extraction - To identify activities of interest (AoI), 
the PAM data corresponding to walking, standing and sitting 
activities was extracted. Each of these activities has a distinct 
pattern as seen from the accelerometer data in Fig 1. A total of 
about 102 minutes of data which included 10 minutes of 
walking, 5 minutes of standing and 2 minutes of sitting for 
each visit from each participant, was extracted and used to 
build and validate ML classifiers for activity detection. The 
data from each PAM (wrist, waist, and ankle wear locations) 
was divided into windows of 5-second intervals (total 1229 
windows) and a criterion activity label was assigned to each 
window based on the video recordings. A window size of 5-
second was selected so that a window for walking activity will 
include at-least 2 gait-cycles for all post-stroke limited 
community ambulators (walking speed > 0.4 m/s) [8]. Features 
were extracted from each 5-second window data from each 
PAM (ankle, waist, and wrist). Features extracted from each 
5-second window from each PAM included time-domain 
variables (mean, standard-deviation, range, the correlation 
coefficient between each pair of three axes), for all three 
accelerometer axes as well as the resultant vector magnitude 
signal (calculated as √(x^2+y^2+z^2)).  The frequency-
domain features included the three most prominent 
frequencies and their corresponding energy in the fast fourier 
transform spectrum for all three accelerometer axes. 

Classifiers - Once the features from each window for all 
three PAM were calculated, the choice of ML classifiers to 
build and validate was based on literature. Linear support 
vector machine (SVM) and Random Forest classifiers are 
popular ML algorithms for activity identification in 
individuals with stroke and, therefore, were selected to build 
and validate. This study’s data set consisted of more data 
windows of walking compared to that of sitting. To account 
for this imbalance in the data set, apart from the linear SVM 
and RF classifiers, we also chose to build and validate the 
Random Under Sampling Boosted (RUSBoosted) trees 

 
Figure 1. Raw acceleration patterns for different activities from the 

anterior/posterior axis of the waist PAM the mobility course. 

 Participant 1 Participant 2 Participant 3 

Age 60 63 64 

Gender Female Female Male 

Affected Right Left Right 
BBS 51 46 54 

TUG (sec) 9.7 15.6 10.8 

10 MWT (sec) 8.8 12.1 7.8 

CBMS 36 27 45 

TIS score 22 18 14 
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classifier. The three chosen classifiers were built and validated 
using data from each PAM (each wear location- ankle, waist, 
and wrist). In order to avoid over-fitting, the default values of 
the hyper-parameters for each classifier were used. The ML 
classifiers (SVM, Random forest, and RUSBoosted trees) 
were trained, and a 5-fold cross-validation technique was used 
to validate the classifiers. The classifier-predicted activity was 
compared to the criterion activity label (manually assigned 
using video recording) for each window to determine the 
accuracy of the classifier.  

Performance Evaluation - To evaluate the performance of 
the classifiers, confusion matrices were plotted. Sensitivity, or 
true positive rate, was computed as the ratio of the number of 
true positive data windows to the number of real positive data 
windows for each activity category. Specificity, or true 
negative rate, was computed as the ratio of the number of true 
negative data windows to the number of real negative data 
windows. 

III. RESULTS 

TABLE II.  ACCURACIES OF DIFFERENT ML CLASSIFIERS AT EACH 

WEAR-LOCATION 

A total of 36 features were extracted from the raw data of 
the PAM at each wear location. The features included time and 
frequency domain outcomes extracted from each axis of the 
PAM. The range of each feature value was different for each 
PAM wear-location. Fig. 2 (A-C) shows visual representation 
of some of the features calculated from each PAM wear-
location.  Different features plotted on the Y-axis (standard 
deviation, correlation, energy) against a common feature 
(mean) on X-axis for all data shows a visual representation of 
how different AoI (sitting, standing and walking) vary based 
on extracted features and how the same feature varies based on 

the wear-location of the PAM. Fig. 2 (D-F) show the confusion 
matrices for the RUSBoosted trees classifier built using data 
for each wear-location. For each wear-location, confusion 
matrices show the accurately classifies windows and 
misclassified windows for each AoI.  

While all classifiers had very good accuracy (>90%), the 
RUSBoosted trees classifier performed better than other 
classifiers for all PAM wear-locations as shown in Table 2. 
While the overall accuracy for the RUSBoosted trees was 
similar for all PAM, the RUSBoosted trees classifier built 
using the waist PAM data had the least misclassification of 
activities across the three different activities of walking, 
standing, and sitting, with the highest accuracy of 99.1%. The 
RUSBoosted trees classifiers had a sensitivity and specificity 
of 100% and 100% (for ankle data), 99.3% and 99.2% (for 
wrist data), 100% and 100% (for waist data), respectively for 
identifying ‘walking’ activity as seen for Fig. 2 (D-F). The 
RUSBoosted trees classifiers a sensitivity and specificity of 
95.3% and 99.3% (for ankle data), 98.0% and 99.3% (for wrist 
data), 97.3%, and 99.3% (for waist data), respectively for 
identifying ‘sitting’ activity. The RUSBoosted trees classifiers 
from the ankle, wrist, and waist data had a sensitivity and 
specificity of 97.8% and 99.2% (for ankle data), 96.9% and 
99.1% (for wrist data), 98.0% and 99.5% (for waist data), 
respectively for identifying ‘standing’ activity.  

IV. DISCUSSION 

This pilot investigation compared three ML algorithms 
built using data from PAM worn at three different wear-
locations. All the three ML algorithms showed a high accuracy 
(>90%) at each wear location. Particularly, RUSBoosted trees 
classifier for the waist wear-location had the highest accuracy 
(99.1%), closely followed by the classifier for the ankle 
(98.8%) wear-location. This may be due to the stability 
(reduced variability) in the waist and rhythmicity in the ankle 
accelerometer data compared to the wrist during the AoI. 
Especially during walking, ankle and hip joints tend to follow 
cyclic and rhythmic trajectories for healthy individuals. For 
individuals with stroke, such patterns may be distorted 

 
Figure 2.  (A-C) show some of the features from each PAM that help visually distinguish between the different activities. (D- F) show the 

confusion matrix for the RUSBoosted trees classifier for each PAM wear-location 

 SVM (linear) 
Random 

Forest 

RUSBoosted 

trees 

Ankle 94.1% 98.5% 98.8% 

Wrist 97.7% 97.6% 98.5% 
Waist 93.7 % 96.5% 99.1% 
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compared to the healthier limb but the rhythmicity and 
repeatability of motion still exist. The placement of sensors on 
the non-affected side may have contributed to the enhanced 
accuracy in detection of AoI. PAM worn on the wrist is known 
to pick up random hand movements that may not reflect or 
correlate with the voluntary movement during the AoI.  

The accuracy of the RUSBoosted trees classifier presented 
in this study is higher compared to accuracy of activity 
detection algorithms previously reported by O’Brien et al. 
[15]. O’Brien et al. used single accelerometer based sensor and 
reported accuracy similar to that reported by Laudanski et al. 
using two inertial measurement units (IMUs). The gyroscope 
sensors which are part of the IMUs drain the battery life of 
IMUs much faster compared to accelerometers and hence, 
currently they are not best-suited for long-term data collection. 
The RUSBoosted trees classifier presented in this paper also 
accounts for the imbalance in time spent in different activities 
and hence might be more suitable for activity identification in 
the community where time spent in activities is imbalanced as 
well.  However, due to the limited sample size, the results of 
this pilot study need to be interpreted cautiously. 

Although the data presented in the current pilot 
investigation included data from two-different visits from 
three stroke participants only, the current analysis had more 
than 102 minutes of data with 1229 5-second windows. The 
three participants in the current pilot had varied functional 
abilities as seen in Table I which brought the inherent 
variability in the data that is typical to stroke individuals. The 
number of windows used in the current pilot is much greater 
than that used by Laudanski et al. (240 2-second windows). 
The features used in the current study are standard features that 
have been previously used in activity recognition in 
individuals with stroke. 

Identifying mobility-related activities accurately is an 
important first step before individuals with stroke may be 
continuously monitored in everyday life to assess the impact 
of rehabilitation. Therefore, as a next step, we will collect more 
data from a larger sample and test the algorithms on an out-of-
sample data-set to establish external validity. Upon further 
validation, these algorithms could be used to determine the 
total time spent by individuals post-stroke in AoI in the 
community and to study the community based mobility 
characteristics of post-stroke individuals.  
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