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Abstract— Mechanically ventilated patients typically exhibit
abnormal respiratory sounds. Squawks are short inspiratory
adventitious sounds that may occur in patients with
pneumonia, such as COVID-19 patients. In this work we
devised a method for squawk detection in mechanically
ventilated patients by developing algorithms for respiratory
cycle estimation, squawk candidate identification, feature
extraction, and clustering. The best classifier reached an F1 of
0.48 at the sound file level and an F1 of 0.66 at the recording
session level. These preliminary results are promising, as they
were obtained in noisy environments. This method will give
health professionals a new feature to assess the potential
deterioration of critically ill patients.

Index Terms— Respiratory Sounds, Audio Signal Processing,
Intensive Care

I. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an infectious
disease caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). While most patients who
develop symptoms recover from the disease without
needing hospital treatment, about 15% become seriously ill
and require oxygen and 5% become critically ill and need
intensive care [13]. In the intensive care unit (ICU), health
professionals use various means to monitor patients,
including chest x-rays, computed tomography scans, or
auscultation of respiratory sounds.

Respiratory sounds are a noninvasive and objective
marker to assess patients’ respiratory condition [7].
Adventitious sounds are additional respiratory sounds
superimposed on normal breath sounds [20]. They are
mainly composed by continuous (wheezes) or
discontinuous (crackles) sounds [12].

Squawks are short inspiratory adventitious sounds,
containing sinusoidal and noisy components, with a
duration of 50 to 400 ms [3], [4]. A squawk usually
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appears as a short wheeze preceded by a crackle [15]. The
typical fundamental frequency of the sinusoidal component
of a squawk is between 200 and 300 Hz [3]. Squawks are
related to certain restrictive (like allergic alveolitis and
diffuse interstitial fibrosis) or acute (like severe pneumonia
and bronchiolitis obliterans) lung pathologies [19]. When
they appear in acute respiratory distress syndrome (ARDS)
critically ill patients in the ICU they can signal either a
premature progression to fibrotic processes of ARDS or the
onset of a localized ventilator-associated pneumonia.
Nevertheless, little attention has been paid to this
adventitious sound, and further education on its
identification and interpretation has been recommended
[12].

Several methods have been devised to detect squawks.
Lacunarity was used to discriminate between fine crackles,
coarse crackles, and squawks, achieving an accuracy of
100% [5]. Neural networks have also been used to classify
squawks along with other classes of adventitious sounds
[9], [2], reaching accuracies higher than 90%. However, all
those works used very small datasets containing less than
10 squawks. To the best of our knowledge, squawk
detection in an ICU setting has not been performed before.

In this work, we developed a method for the detection
of squawks in respiratory sounds of mechanically ventilated
patients with COVID-19. Our method encompasses several
steps: respiratory cycle estimation, identification of possible
squawks, feature extraction, and clustering.

II. MATERIALS AND METHODS

A. Ethics and participants

Data used in this study were collected in the ICU of "G.
Papanikolaou" General Hospital, Thessaloniki, Greece. The
study was approved by the Ethics Committee of the same
hospital. Informed consent was not possible to obtain, due
to the restrictions to visits to the hospital posed by the current
pandemic and was deemed acceptable practice by the ethics
committee of the institution.

B. Data collection and annotation

259 sound files (SF) (duration: 15 s) were acquired from
2 chest locations (posterior basal left and right) of 29 (10
women, 19 men) mechanically ventilated (pressure
controlled and volume controlled ventilation) COVID-19
patients, with an average age of 65.4 ± 11.4 years. The
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acquisition sensor was the Littmann 3200 electronic
stethoscope (3M, St. Paul, Minnesota, USA), which
produced audio files with a sampling frequency of 4 kHz.

Data collection of each patient was divided by recording
sessions (RS), where one of three physicians acquired at least
two recordings and noted the respiratory rate (RR) at the
time. A total of 123 RS were carried out.

Manual annotation of respiratory sounds is a very
time-consuming task requiring expert knowledge from
health professionals. Given the time limited availability, due
to the current phase of the pandemic, only one experienced
physician annotated the presence/absence of squawks in
each SF. The annotation was blind, i.e., the annotator did
not know to which patient or RS did a SF belong.
Furthermore, the annotations were purely aural, an aspect
that should be addressed in future work by also providing
visual information to the annotators (e.g., time-expanded
waveforms and spectrograms). Posterior basal locations
were selected because they maximize lung sound intensity
[14] while minimizing heart sound interference.

C. Respiratory cycle estimation

Respiratory cycle (RC) estimation is a complex problem,
especially when subjects with respiratory diseases are
involved, since breathing pattern and lung sounds are
known to change in the presence of respiratory diseases
[8]. A good RC estimation is important for squawk
detection, given that squawks occur exclusively in the
inspiration phase [3]. However, RC estimation is easier
when the RR is known and fixed, because one
well-estimated inspiration onset is enough to find out all
inspiration onsets in a SF. First, we applied a fourth-order
elliptic band-pass filter between 100 and 400 Hz using the
MIR Toolbox [10]. Then, we computed the RMS energy in
100 ms frames with 90% overlap. Next, we performed
peak-picking on the RMS curve and we calculated the
distance between each peak, creating a distance matrix. As
all patients in this study were mechanically ventilated, we
could assume that the RR was fixed and that all the RCs in
the same RS had the same duration. Then, we computed
the remainder after division (RAD) between each peak and
RC duration. Assuming a typical inspiration:expiration ratio
of 1:2, we found the peaks with a RAD of less than the
duration of half an inspiration. The mode of the resulting
vector should correspond to possible inspiratory peaks,
assuming that the highest of the remaining energy peaks
should happen during an inspiration. We searched for the
last frame in the previous second where the RMS value
crosses a given threshold to find the beginning of the main
inspiration. The following equations show the formulas for
estimating the RC duration and for discovering the
beginning of the main inspiration.

RCDuration = 60/RR (1)

InspirationDuration = RCDuration/3 (2)

Threshold = HighestPeakV alue/4 (3)
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Fig. 1: Respiratory cycle estimation using the RMS energy.
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Fig. 2: Audio waveforms before and after removing non-
relevant parts.

Finally, by subtracting and adding RCD to the estimated
beginning of the main inspiration, we got a vector
containing all the inspiration onsets. An example of this
process can be seen in Figure 1.

D. Identification of possible squawks

Having a vector of estimated inspiration onsets and
knowing that squawks are inspiratory sounds, we can
define time intervals where squawks are most likely to
occur. We established that each squawk interval started at
the inspiration onset and had the duration of one
inspiration. Then, we added attenuated pink noise to the
signal and removed the non-relevant intervals of the audio
signal, as shown in Figure 2. The addition of pink noise
was inspired by the ensemble empirical mode
decomposition (EEMD) approach, which consists of sifting
an ensemble of white noise-added signal and considering
the mean as the final result [21].

The next step was to decompose the signal into intrinsic
mode functions (IMFs) using EMD [6]. Rilling and
Flandrin summarize the EMD rationale by the motto
“signal = fast oscillations superimposed to slow
oscillations”, with iteration on the slow oscillations
considered as a new signal [17]. Assuming the sinusoidal
part of a squawk is a high-frequency narrow-band signal,
we extracted just the first IMF (IMF1). Then, we obtained
a Bump scalogram by computing the continuous wavelet
transform between 125 and 1000 Hz. The wavelet
magnitude was then normalized by its maximum value and
a binary image is generated by applying a magnitude
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threshold, as shown in the following equation:

signal =

{
1, magnitude > threshold
0, magnitude <= threshold

(4)

Three threshold values were tested: 5%, 25%, and 50%.
Figure 3 plots the resulting binary images after applying
different thresholds.

Subsequently, we selected all non-flat connected
components (CC) that have durations between 25 ms and
400 ms. These values were chosen considering that the
sinusoidal component encompasses at least half of each
squawk’s duration.

E. False positive elimination
Before extracting features for each CC, we ascertained

whether a file had certain characteristics which would make
it unlikely to contain squawks. To that effect, we computed
the enhanced magnitude spectrum of the autocorrelation of
IMF1 using the spectral product method with compression
factor M = 2 [1]. If the highest peak of the spectrum was
below 75 Hz (half of a fundamental frequency of 150 Hz)
or above 500 Hz, the file was discarded. In addition, we
computed the spectral flatness in 500 ms frames with 50%
overlap and discard files whose minimum flatness is below
50%, a loose threshold given that most squawks should have
a minimum flatness well below 50%.

F. Feature extraction
In this step, we extracted 17 features for each event,

described in Table I. Spectral features were extracted from
the spectrum of IMF1 at each event, while the other
features were estimated from the binary image of each CC.

TABLE I: Description of the 17 extracted features.

Feature Description
Duration Duration of event
Fundamental Frequency Minimum frequency
Frequency Range Frequency range
Zero-Crossing Rate Number of zero-crossings per second
IMF1 Peaks Number of peaks above 1/4 of the

maximum amplitude of IMF1 of each
event

Graphical Extent Ratio of pixels in the CC to pixels in the
total bounding box

Graphical Perimeter Area Ratio of pixels around the boundary of the
CC to pixels in the CC

Spectral Centroid Center of mass of the spectral distribution
Spectral Crest Ratio between the maximum spectral

value and the arithmetic mean of the
energy spectrum value [16]

Spectral Entropy Estimation of the complexity of the
spectrum

Spectral Flatness Estimation of the noisiness of a spectrum
Spectral Kurtosis Measure of the flatness of a distribution

around its mean value
Spectral Rolloff Frequency such that 95% of the total

energy is contained below it
Spectral Skewness Measure of the asymmetry of a

distribution around its mean value
Spectral Slope Linear regression of the magnitude

spectrum
Spectral Spread Variance of the spectral distribution [11]
Harmonic Ratio Maximum of the normalized

autocorrelation

G. Clustering

After centering the data to have median 0, we partitioned
the observations into clusters using the k-medoids
algorithm. To determine the number of clusters, we test
k = {2, 3, ..., n}, where n is the number of squawk
intervals, and choose the value of k that maximizes the
median of the silhouette, which is a measure of how
similar each point is to points in its own cluster, when
compared to points in other clusters [18]. Subsequently, we
had to choose the cluster which was most likely to contain
squawks. Considering that squawks are usually repeatable
and tend to appear in every inspiration, they should form a
consistent cluster, with each point having similar
characteristics. A composite of 9 features was then used to
choose the best candidate cluster. More specifically, we
assumed that:

• Spectral crest, kurtosis, skewness, and harmonic ratio
should be high;

• Spectral entropy, flatness, rolloff, slope, and spread
should be low.

Therefore, the medoid that best approximated the ideal
cluster was chosen. Next, assuming that there could be
only one squawk per inspiration, we chose for each
inspiration the squawk whose fundamental frequency was
closer to the median fundamental frequency of the cluster.
Finally, we discarded squawks that did not conform to
some conservative rules:

• Fundamental frequency and spectral centroid should be
lower than 500 Hz;

• Spectral skewness and frequency range should be
positive;

• There should be at least 10 IMF1 Peaks, corresponding
to a stable signal of at least 100 Hz.

If at least two squawks survived after this process, the file
was classified as containing squawks.

H. Evaluation Measures

We used the following measures to evaluate the
performance of the algorithms:

Precision =
TP

(TP + FP )
(5)

Recall =
TP

(TP + FN)
(6)

F1Score(F1) =
(2× Precision×Recall)

(Precision+Recall)
(7)

MatthewsCorrCoef(MCC) = ((TP×TN)−(FP×FN))√
((TP+FP )(TP+FN)(TN+FP )(TN+FN))

(8)
where TP (True Positives) are files with squawks that are
correctly classified; TN (True Negatives) are files with no
squawks that are correctly classified; FP (False Positives) are
files that are incorrectly classified as containing squawks; FN
(False Negatives) are files with squawks that are incorrectly
classified.
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Fig. 3: Binary images after applying different thresholds. The higher the threshold, the sparser the resulting image.

Refined annotation results (259 files)
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Fig. 4: Results at the SF level.

III. EVALUATION

In this section, we analyze the performance of the squawk
detection method in two ways: at the SF level and at the RS
level.

At the SF level, the algorithm with the best performance
had a threshold of 50%, attaining a F1 of 0.48 and a MCC
of 0.42. Figure 4 shows the results at the SF level. At the
RS level, the algorithm with 25% threshold achieved the
best results, reaching a F1 of 0.66 and a MCC of 0.54, as
displayed in Figure 5.

As can be seen in Figure 4 and Figure 5, the trade-off
between precision and recall is mediated by the wavelet
threshold, which behaves as a dial that health professionals
can use to decide if the detection should be looser or
stricter. The results at the RS level are the most meaningful

Refined annotation results (123 recording sessions)
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Fig. 5: Results at the RS level.

in practical terms, as the main output that health
professionals expect is to know if squawks are detected in
a given RS and to compare those results to previous and
subsequent RS.

Considering just the 25% threshold algorithm, another
noteworthy fact was that, while the number of FP at the SF
level was 25, it was only 13 at the RS level. Furthermore,
only 3 FP were from patients that presented no squawks
during their stay in the ICU, one from each. The other 10
FP were from RS preceding RS with annotated squawks.
Thus, we can speculate that the algorithm was sensitive to
squawks before they were audible by the expert. A larger
dataset would be necessary to test that hypothesis.
Regarding FN, there were 23 at the SF level and 8 at the
RS level, with only 2 files from 2 patients that had
squawks. Figure 6 shows examples of a TP, a FP and a FN.
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Fig. 6: Examples of true positive (left), false positive, (center), and false negative (right).

The TP example corresponds to a prototypical case of a file
with squawks: the squawks are repeatable, i.e., they appear
in every inspiration, with a fundamental frequency around
250 Hz and a duration of 50 ms. The components that can
be seen in the FP example are probably inspiratory
wheezes, as annotated by the health professionals in the
rapid annotations. Regarding the FN example, it
demonstrates how a robust RC estimation is needed to
improve the results, as the squawk components visible in
the scalogram are outside the boundaries of the intervals
automatically defined as relevant. Thorough analysis of RC
estimation was outside the scope of this paper and should
be addressed in future work.

IV. CONCLUSION

In this work, we proposed an algorithm for the detection
of squawks in ICU patients and analyzed how the wavelet
threshold for creating the binary images affected the
performance at the SF level and at the RS level. This
method will allow physicians to be alerted about the
occurrence of squawks, helping them to timely assess the
potential deterioration of a critically ill ARDS patient.
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