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Abstract— ECGs analysis is an important tool in cardiac
diagnosis. ECG data also have the potential to be used as
a biometric source that allows precise person identification
similar to the widely used fingerprint and iris recognition
techniques. However, this phenomenon also raises serious pri-
vacy concerns. In this study, we provide a complete, multi-
step ECG identification algorithm using a private database
of ECG recordings. We train and validate our AI model on
approximately 40k patients which makes this study by far the
largest research project in this field. Moreover, our best model
attained an exceptionally high accuracy of 94.56%. In addition
to discussing the general implications of the deployment of
such systems related to privacy, for the first time, we also
assess the accuracy of ECG-based identification for distinct
heart condition groups (and combinations of such conditions)
and the corresponding privacy implications. For instance, we
discovered that in contrast to initial expectation that identi-
fication accuracy for healthy normal sinus rhythm should be
the highest, the identification accuracy is higher for patients
with sinus tachycardia or patients who are diagnosed with
both ST changes and supraventricular tachycardia. This puts
these patients at a higher risk of privacy issues due to re-
identification. On the other hand, we observed that patients
with premature ventricular contractions have an identification
accuracy as low as 78.54%. The identification rate for patients
with a pacemaker is 80.2%.

Clinical relevance—While ECG as a biometric can be a
potentially useful technology, it also raises serious concerns
regarding the privacy of cardiac patients. Especially, the ECG
Identification algorithms empowered by deep learning can
increase the risk of re-identification.

Keywords: Arrhythmia, Biometrics, Convolutional neural
networks (CNN), Deep Learning, ECG , ECG Identification,
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I. INTRODUCTION

Electrocardiogram (ECG) data reflects the bio-electrical
activity of the heart collected from human body surface. As
shown in Figure 1, an ECG during one normal heartbeat
consists of several features including the P-wave, the QRS
complex, the T-wave, PR interval, QT interval, PR segment
and ST segment. ECG is an important and non-invasive tool
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Fig. 1. The ECG waveform and segments in lead II that presents a normal
cardiac cycle

in the diagnosis of heart status and detection of abnormali-
ties. The amplitudes, time intervals, and other morphological
features in different sections of the ECG signal are used
for diagnoses and classification of different types of cardiac
conditions. Arrhythmia is a group of conditions in which
the heartbeat has an irregular rate or rhythm. Arrhythmia
has a wide and significant impact on public health, quality
of life, and medical expenditures [1]. For example, the
most common type of arrhythmia, atrial fibrillation (AFIB)
depicted in Figure 2, is associated with a significant increase
in the risk of heart failure, cardiac dysfunction and stroke [1].

ECG data also has the potential to be used as a biometric
(electro-physiologic) tool in human identification systems,
similar to fingerprint, face, and iris [2], [3]. It also eliminates
the aliveness test required in some other forms of biometric
since heart signal is an inherently alive biometric. Even
though the application of ECG in biometrics is a useful
technology, it also raises serious privacy concerns about
re-identification of patients via AI-based ECG matching
techniques. For example, an ECG-based biometrics system
can also diagnose and store heart conditions of the users in
the background. Vice versa, the ECG recordings collected
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Fig. 2. A 12-lead ECG showing atrial fibrillation rhythm that has no visible
P waves that are replaced by coarse fibrillatory waves and an irregularly
irregular QRS complex.

from patients for diagnosis or research purposes can be
matched with external ECG databases using ECG biometric
identification systems to recognize the individual patient.
Additionally, privacy becomes even more important as we
collect and store a constantly increasing volume of data from
the citizens. For example, the emerging medical wearable
device technologies capture and store a continuous stream
of sensitive health data. The accumulation of such large
amounts of personal information makes the privacy protec-
tion an even more critical requirement.

II. LITERATURE REVIEW

Automated analysis of ECG data using machine learn-
ing techniques has been the focus of many recent cardiac
research efforts such as arrhythmia classification [4] and
accurate prediction of ventricular arrhythmia origins [5].
Furthermore, ECG data have also been used for emo-
tion recognition [6], [7]. A typical ECG machine learning
pipeline includes denoising and baseline correction, heartbeat
segmentation and QRS detection, feature extraction, and
model training. Both temporal/morphological features like
amplitude, duration, or slopes of different sections of the
PQRST segment and frequency domain features like Fourier
or wavelet transformation coefficients have been used by
researchers. For instance, QRS duration and amplitude of the
P-wave are features from the time domain and Daubechies
discrete wavelet transformation coefficients, wavelet scale-
ograms, and Fast Fourier Transformation (FFT) coefficients
are features from the frequency domain. Support Vector Ma-
chines (SVM), naive Bayes, random forest, neural networks
and their variations have been some of the commonly used
machine learning techniques in ECG research.
The idea of using ECG as a biometric identifier has been
around for a long time [8], [2]. Even though, subsequent
studies have reported high identification accuracies, all of
them were based on small number of subjects, ranging
from ten to a few hundred. These studies considered ECG
recordings with single and multiple leads. Belo et al [9]
leveraged Temporal Convolutional Neural Network (TCNN)
and Recurrent Neural Network (RNN) for both ECG identifi-
cation and authentication. The authors report that overall, the
TCNN outperforms the RNN achieving 100%, 96% and 90%

accuracy on Fantasia (40 subjects), MIT-BIH (47 subject),
and CYBHi (63 subjects) databases respectively. Labati et al
[10] used a CNN-based deep learning approach to extract
features from ECG and achieved 100% accuracy on around
50 human subjects. Deshmane and Madhe [11] proposed a
CNN based approach achieving 81.33%, 96.95%, 94.73%,
and 92.85% accuracies on MITDB (47 subject), FANTASIA
(40 subjects), NSRDB (18 subjects), and QT databases (105
subjects). Eduardo et al [12] used autoencoders for denoising
and feature extraction in an ECG biometric system. Salloum
and Kuo [13] used Recurrent Neural Networks (RNN) with
Long Short-Term Memory (LSTM) and Gated Recurrent
Units (GRU). They could reach 100% identification rate with
90 subjects of the public ECG-ID database. Zhang et al [14],
achieved an average identification rate of 93.5% using a
multi-resolution CNN on different datasets ranging from 18
to 47 subjects. Li et al [15] used two cascaded CNNs, the first
CNN is used for feature extraction from ECG heartbeats and
the second one is used for identification. They used a mixed
dataset from 184 subjects and achieved 99.52% accuracy.
Table I summarizes the results from previous research in
ECG Identification.

The deep leaning model employed to re-identify subjects
based on their ECG recordings needs to possess exceptional
inherent quality, especially as the number of patients in the
data increases. Large sample of subjects simultaneously pro-
vides two challenges, increases the probability of observing
subgroups of similar ECG profiles and dramatically increases
the number of possible incorrect identities for any accuracy
level. For example, given a sample size of n, the proportion
of identification selections that entail an accuracy of p∗100%
is, (

n
np

)
[
∑n−np

i=1 (−1)i+11/i!](n− np)!
n!

. (1)

Equation (1) can be approximated and simplified,

1

(np)!e
. (2)

Lastly, using Stirling’s approximation equation (2) yields,

enp−1

√
2πnp(np)np

. (3)

In our study, with sample of size n was 39,754 and attained
accuracy of 94.56%, the proportion of such favorable re-
identification selection is practically zero.

III. DATA

The 12-lead ECG data analyzed in this work came from
two open access research databases [16], [17], containing
10,646 and 344 ECG recordings respectively, as well as
an additional new dataset from the Ningbo First Hospital,
including 34,320 ECG recordings. The institutional review
board of Ningbo First Hospital approved this study and
granted the waiver of the requirement to obtain informed
consent. There are 88 cardiac conditions present in the com-
bined data that contains 45,310 ECG recordings consisting
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of 10-second, 12-lead ECGs with 500 Hz sampling rate.
Cardiologist-supervised physicians interpreted each record-
ing and gave cardiac condition labels and ECG findings.
The number of volts per A/D bit was 4.88, and the A/D
converter had 32-bit resolution with upper and lower limits of
32,767 and -32,768 microvolts respectively. Detailed descrip-
tion of the enrolled participants’ baseline characteristics and
condition frequency distribution can found in our previous
work [4].

IV. PREPROCESSING

We employed a three-stage noise reduction method that in-
cludes Butterworth low-pass filter to remove high-frequency
noise (above 50 Hz), the Robust LOESS to eliminate baseline
wandering and Non-Local Means (NLM) to remove residual
noise [4]. The major known sources of noise contamination
were power line interference, electrode contact noise, motion
artifacts, skeletal muscle contraction, baseline wandering,
and random noise. The baseline wandering, the low fre-
quency noise component (<0.5Hz), could be induced by
respiration. The high frequency (50-60Hz) noise component
majorly was caused by the power line interference. The ECG
recordings from patients were broken down into R-peak to
R-peak intervals to be used as the input unit to the neural
network. Instead of heartbeats we used R-to-R interval since
it is easier and more accurate than trying to find the boundary
of each heartbeat.

V. DEEP LEARNING MODEL

As shown in Figure 3, we implemented a Convolutional
Neural Network with three repeated sequences of convolu-
tion, batch normalization, and max-pooling, followed by a
flattening layer, two dense layers, and a final output softmax
layer. The number of units in the final softmax layer is
equal to the number of patients (38,378) in the dataset. We
used relu activation function for all of the convolutional
layers. The input vector was a vector of length 12*300
representing the 12 leads data for a single R-to-R interval.
The labels were the encoded numbers for the patient IDs
in the database. Adam optimizer was used with sparse
categorical crossentropy loss function. We trained the model
on the GPU machines provided by the Keck computational
research cluster at Chapman University
The data consisted of ECG samples from 38,378 patients in
both the training and test sets. We randomly selected 20%
of the R-to-R intervals from each patient to be used in the
validation set and the rest were used in the training set.
Thus, all individuals were present in both the training and
validation sets but with distinct and non-overlapping R-to-R
interval data. There was a total of 497,911 R-to-R intervals,
of which 398,328 were used in the training and 99,583 in
the test sets respectively (20% of the data was used for
validation). We achieved an accuracy of 94.56% (the percent
of the total number of R-to-R intervals in the validation data
identified correctly). Figure 4 shows the convergence curve
from the model training. It is clear that the training and
validation curves have a good fit.

Fig. 3. Deep Learning Model Architecture

VI. DISCUSSION

We designed and implemented an AI algorithm aimed at
identifying subjects based on 12-lead ECG data. We extended
all existing studies in terms of sample size and were able
to attain a high accuracy. As shown in Table I, Previous
results had severe limitations due to sample sizes. In this
study we showed analytically the exploding complexity of
the identification process as the sample size grows. In this
study we trained a model with 38,378 subjects in both the
training and validation datasets. The accuracy attained by the
algorithm was exceptionally high at 94.56%.

A. Privacy Risks

As we saw in the previous sections, advanced AI tech-
niques like CNNs enable us to identify individuals in a
large population using their ECG signals. Despite its useful
applications, this also brings new privacy and ethical con-
cerns regarding ECG data. For instance, ECG identification
now creates the potential for re-identification of individu-
als in ECG databases. Re-identification is the practice of
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Fig. 4. Training loss convergence curve

discovering the individuals in an anonymized database by
matching the records with publicly available information
(auxiliary data). Having the wrong belief that anonymizing
data protects the privacy of patients; many institutions release
anonymized data for research purposes. For example, in
1997, researchers from MIT were able to re-identify the
governor of Massachusetts in an anonymized healthcare
insurance database released for research purposes [18]. They
were able to re-identify him by matching this database with
the publicly available voter registration data.

One potential re-identification scenario in ECG datasets
can happen when individuals contribute data to two different
research databases. For example, database A has ECG sam-
ple, gender, and date of birth and database B has an ECG
sample and zip code. By simply matching the ECG columns
in both databases using an identification system like the one
we proposed in this paper, one can discover the individuals
which appear in both datasets and obtain a complete profile
of the individuals by joining their records. In this case, we
have gender and date of birth from database A and zip code
from database B. These three demographics attributes might
be enough to uniquely identify someone since 87% of US
citizens can be uniquely identified only by having their date
of birth, gender and zip code [19], [20].

B. Privacy Risks per Condition

To assess the privacy risks for cardiology patients posed
by ECG identification technology, we calculated the misiden-
tifications proportions per disease in our validation set. We
considered two scenarios in our calculations. In the first sce-
nario, multiple diagnoses per patient were flattened, meaning
that if a patient who was misidentified had two conditions,
we counted that as misidentification in both category of
conditions. In the second scenario, we assumed multiple
diagnoses for a patient as a single category to understand
the joint effect of multiple conditions on the misidentifcation
rate. The results for conditions where we had more than
500 samples are shown in Table II and Table III. Patients
with conditions which have high identification accuracy rates
should be more concerned with the protection of their ECG
data.

From Table II, we can observe that healthy sinus rhythm

and conditions like sinus tachycardia, and supraventricular
tachycardia have high identification rates, while conditions
such as premature ventricular contractions, aberrant ven-
tricular conduction, or patients with pacemaker have low
identification rates. The identification rate for patients with
a pacemaker is 80.2%. One interesting observation is that in
contrast to the common expectation, some conditions have
even a better identification rate than normal sinus rhythm.
For instance, the highest identification rate was attained for
patients diagnosed with both ST changes and supraventric-
ular tachycardia (99.25%). We can also see in Table III
that patients who are diagnosed with atrial fibrillation only
or a combination of atrial fibrillation and other conditions
had a lower identification rate and are at the bottom of the
table. On the other hand, we also notice that the top five
identification rates at Table III are for the group of patients
who have a form of tachycardia. Tachycardia is a group of
heart conditions in which heart beat rate is too fast.

C. Future Work

As we shown in the paper, aggregation and anonymization
do not guarantee privacy and individuals can be re-identified
even from the published aggregated results specially with
the ECG data which can uniquely identify people. We are
working on the application of privacy preserving techniques
like differential privacy to ECG datasets. Differential privacy
enables us to share aggregated statistics from private datasets,
while preserving individual’s privacy [21]. It works by ran-
domly adding noise to the results to protect the privacy of
individuals while sacrificing some accuracy in the published
analysis.
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TABLE I: Results from Previous Research

Research Number of Subjects Accuracy
Belo et al [9] 40, 47, 63 subjects) 100%, 96% and 90%
Deshmane and Madhe [11] 47, 40, 18, 105 81.33%, 96.95%, 94.73%, and 92.85%
Salloum and Kuo [13] 90 100%
Zhang et al [14] 18-47 93.5%
Li et al [15] 184 99.52%

TABLE II: Identification rate per single condition

Condition Name Number of R-to-R Inter-
vals in Validation

Identification Rate

supraventricular tachycardia 3244 98.55
sinus tachycardia 21120 97.14
early repolarization 734 97.0
sinus rhythm 17108 96.98
sinus bradycardia 25573 95.67
counterclockwise vectorcardiographic loop 1371 95.55
tall P wave 847 95.51
ST elevation 2230 95.47
tall tented T wave 906 95.14
1st degree av block 2173 94.85
right axis deviation 2438 94.75
atrial flutter 6377 93.9
st changes 16683 93.8
left ventricular high voltage 11570 93.54
left ventricular hypertrophy 2069 93.23
incomplete right bundle branch block 821 93.06
low QRS voltages 2754 92.85
left anterior fascicular block 1203 92.77
prolonged QT interval 888 92.68
T wave abnormal 14706 92.54
T wave inversion 8194 92.51
ST depression 4571 92.5
sinus arrhythmia 5154 92.39
Q wave abnormal 2572 92.03
complete right bundle branch block 3480 91.87
right bundle branch block 634 91.8
poor R wave progression 2020 91.58
left axis deviation 3675 91.56
Clockwise vectorcardiographic loop 928 91.27
complete left bundle branch block 785 90.32
intraventricular block 1149 89.99
atrial fibrillation 20718 88.92
atrial tachycardia 1022 88.06
premature atrial contraction 3201 87.19
aberrant ventricular conduction 2251 82.14
pacing rhythm 2273 80.2
premature ventricular contractions 3486 78.54
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TABLE III: Identification rate considering joint conditions

Condition Name Number of R-to-R Inter-
vals in Validation

Identification
Rate(%)

ST changes and supraventricular tachycardia 937 99.25
supraventricular tachycardia 900 99.0
sinus tachycardia and T wave abnormal 1187 98.9
sinus tachycardia 8403 98.55
ST changes and sinus tachycardia 1641 97.87
sinus rhythm 12335 97.58
atrial flutter and ST changes 921 97.07
sinus bradycardia 13777 96.66
sinus rhythm and T wave abnormal 680 96.62
left ventricular high voltage and sinus brady-
cardia

1992 96.44

sinus bradycardia and T wave abnormal 1045 96.27
atrial flutter 979 94.99
sinus arrhythmia 2556 93.62
atrial fibrillation and ST changes 1381 93.12
sinus arrhythmia and sinus bradycardia 653 92.8
atrial fibrillation and left ventricular high volt-
age

844 91.82

atrial fibrillation and T wave abnormal 1631 91.48
atrial fibrillation 3922 91.46
atrial fibrillation and left ventricular high volt-
age and ST changes

699 91.13
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