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Abstract— Recently, deep learning algorithms have been
used widely in emotion recognition applications. However,
it is difficult to detect human emotions in real-time due to
constraints imposed by computing power and convergence
latency. This paper proposes a real-time affective computing
platform that integrates an AI System-on-Chip (SoC) design
and multimodal signal processing systems composed of
electroencephalogram (EEG), electrocardiogram (ECG), and
photoplethysmogram (PPG) signals. To extract the emotional
features of the EEG, ECG, and PPG signals, we used a
short-time Fourier transform (STFT) for the EEG signal
and direct extraction using the raw signals for the ECG and
PPG signals. The long-term recurrent convolution networks
(LRCN) classifier was implemented in an AI SoC design and
divided emotions into three classes: happy, angry, and sad.
The proposed LRCN classifier reached an average accuracy
of 77.41% for cross-subject validation. The platform consists
of wearable physiological sensors and multimodal signal
processors integrated with the LRCN SoC design. The area
of the core and total power consumption of the LRCN chip
was 1.13 x 1.14 mm? and 48.24 mW, respectively. The on-chip
training processing time and real-time classification processing
time are 5.5 us and 1.9 us per sample. The proposed platform
displays the classification results of emotion calculation on the
graphical user interface (GUI) every one second for real-time
emotion monitoring.

Clinical relevance— The on-chip training processing time and
real-time emotion classification processing time are 5.5 us and
1.9 us per sample with EEG, ECG, and PPG signal based on
the LRCN model.

I. INTRODUCTION

Applications involving the learning of changes in hu-
man emotion have been a popular subject for many re-
searchers in interdisciplinary fields such as computer sci-
ence, psychology, engineering, and cognitive science [1].
The main sources of obtaining data related to emotional
states involve completing questionnaires, intuitive changes
in facial expressions, and physiological signals such as
the electrocardiogram (ECG), electroencephalogram (EEG),
and photoplethysmogram (PPG) signals [2]. Compared to
the methods mentioned, physiological signals are the most
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objective and true responses [2]. Thus, in the past two years
research on emotion recognition has mainly been focused on
using ECG and EEG signals. From shallow models to deep
models [3]-[6], many studies have used machine learning as
algorithms to discover the correlation between physiological
signals and human emotional responses. In the research of
EEG-related emotions, many EEG studies point out that EEG
has a high degree of correlation with human emotions [7],
[8]. Similarly, PPG signal is also widely used for emotion
recognition [9], [10]. Handouzi et al. [11] developed an
automatic emotion recognition system that used only one
physiological signal called “blood volume pulse” (BVP).
Among healthy people, this system can identify short-term
emotions with 95% accuracy.

However, these studies all face the same problem: The
generalization of a model trained by a physiological signal
from only one subject is not quite suitable for other subjects
due to the unique nature and responses of each emotional-
cognitive system in each subject. This paper presents a real-
time affective computing platform integrated with real-time
emotion recognition and multi-modal physiological signals
systems based on a subject-independent artificial intelligence
(AI) algorithm. By applying real-time emotion calculation
methods and real-time physiological signals display, subjects
can observe their emotional changes and physical health
information.

II. SYSTEM ARCHITECTURE

The system architecture of the proposed affective com-
puting platform is shown in Fig. 1. It consists of three
wearable front-end sensors: EEG, ECG, and PPG sensors,
a signal processing system, an Al system-on-chip (SoC)
platform, and graphical user interfaces on a laptop. The
EEG, ECG, and PPG front-end sensors send raw data to the
signal processing system through Bluetooth slaves, which are
connected to the Bluetooth master of the signal processing
system. Within the signal processing system, signal pre-
processing and feature extraction were performed to suit the
emotion classifier input. After the processor sent the for-
matted input, the Field-Programmable-Gate-Array (FPGA)
controller in the Al SoC platform sent emotion features to the
emotion classifier implemented in the Long-term Recurrent
Convolutional Networks (LRCN) chip and received emotion



wearable front-end sensors

Signal processing system

\ 1

7= 1
= o

g |

. 1

Signal pre-
processing Unit
i1
Bluetooth Module
+ 1
| Emotion Feature
Extraction Unit

Emotion features ; SPI
""" — ===

| flle

Graphic User Interface I H0F  FPGA Controller 1
. s8 |
ﬁ I 1 I

o= % | Emotions |
= == e 0 Bluetooth Module :

% 1 T f

(T — = = 1
| Emoticn classifier I

1
1

Laptop with LRCN Chip

Al System-on-Chip Platform

Fig. 1. The integrated affective computing platform with an Al system-
on-chip design and a multimodal signal processing system

classification results from the chip. Finally, the FPGA con-
troller in the AI SoC platform sent the emotion classification
result to the graphical user interface on the laptop via a
Bluetooth point-to-point connection.

III. EMOTION RECOGNITION ALGORITHM

A. Processing Flow

Fig. 2 describes the processing flow of EEG, ECG, and
PPG signals respectively. Considering the computation power
limitation of multiple signal processing, we chose an 8-
channel EEG signal, a 3-lead ECG signal, and the fingertip
PPG signal. According to the study of Yang et al. [12], EEG
channels such as Fpl, Fp2, F3, F4, F7, F8, T3, and T4 are
recommended selections for the EEG-based emotion recog-
nition algorithm. Each EEG sample was 24 bits for a total
of 192 bits sample size, collected at a rate of 250 samples
per second. An 8-45 Hz bandpass filter was deployed to
extract the most emotion-related frequency parts that should
improve the classification. The spectrograms were extracted
by hardware-friendly Short-Time Fourier Transform (STFT)
on each 4-second data sequence with a 1-second stride.
The baseline normalization was then applied to eliminate
the background differences between each subject. Here we
proposed the LRCN classifier to replace the traditional CNN
model which incorporated emotion changes over time into
analysis without changing other procedures. Finally, the 3-
class emotional output would be produced by LRCN with
leave-one-subject-out validation (LOSOV).

The ECG Lead III was measured with an ADS1298 sensor
with a gain of 12 for 250 samples per second and a sample
size of 24 bits. A 60 Hz notch filter was deployed to pre-
process the ECG data. However, the PPG data were directly
windowed due to the stable sources. To synchronize the data
segmentation of the ECG and PPG signals with the EEG
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Fig. 2. Signals processing flow of the entire affective computing platform

signals, both ECG and PPG data were segmented by a 30
seconds window with the same 1-second stride as EEG data.
The So and Chan algorithm [13] was employed to real-time
and accurately locate the peaks of the ECG and PPG signals.
The R-R intervals (RRI) features and pulse transmission
time (PTT) features were then calculated. The mean and
variance of PPG features were also derived. Eventually, the
spectrograms of EEG and all the derived features of ECG and
PPG signals could be applied to the real-time physiological
monitoring display.

B. LRCN Training Model

The LRCN architecture for real-time emotion classifica-
tion is shown in Fig. 3. The Long Short-Term Memory
(LSTM) layers were appended behind three convolution-
pooling layers to extract time-sequence features of the EEG
signal. The many-to-one architecture was applied due to the
inherent time-dependent characteristic of the LSTM layers
The feature map inputs of 10 seconds were split into 10
timesteps. which consisted of 38 Hz x 8 channels. In every
second, one timestep would go through three convolution-
pooling layers for the training process until 10 timesteps have
all been processed. The LSTM layer then sends the output
to the fully connected layer and Softmax layer for emotion
classification output calculated with 10 time-dependence
data.

IV. SYSTEM HARDWARE IMPLEMENTATION

The proposed affective computing platform was developed
and integrated as shown Fig. 4. This platform consists
of three wearable front-end sensors, a RISC-V processor
for multiple signal processing, and an Al SoC platform
integrated with an FPGA controller and the implemented
LRCN chip.
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Fig. 3. The LRCN architecture for real-time emotion classification
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Fig. 4. The hardware design of the affective computing platform integrated
with an AI SoC system and wearable front-end sensors

A. Wearable Sensors Development

The wearable sensors of the three signals are integrated
with the Bluetooth connection device of the signal process-
ing system. To facilitate wearing, we use a dry electrode
brainwave cap as the front-end circuit design for collecting
EEG signals. The signals of the three wearable sensors are
integrated with the Bluetooth device connected to the signal
processing system. For comfortable wearing, we used a dry
electrode brainwave cap as the front-end circuit design for
collecting EEG signals. The front-end circuit of ECG is
designed as a miniaturized device that is portable to connect
to the measurement electrode patch signal. In the PPG front-
end circuit, the MAX30102 sensor is used to collect the PPG
signal from the fingertips. All front-end circuits will then
transmit the signal to the signal processing system via Blue-
tooth for pre-processing and emotional feature extraction.

B. Signal Processing Flow of the RISC-V Processor

After receiving the signal transmitted by the front-end
circuit, the RISC-V processor performs the pre-processing
and emotional feature extraction of all signals. To send
emotion-related features into the emotion classifier for emo-
tion recognition and calculation in real-time, the RISC-V
processor will give priority to the pre-processing algorithm of
the EEG signal as shown on the left of Fig. 2. After the EEG
emotion characteristics are calculated, the processor will
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send the emotion characteristics to the emotion recognition
chip through the FPGA controller to perform the calculation
of the LRCN algorithm. ECG and PPG features are also
processed by the RISC-V processor at this time and then sent
to the FPGA controller. After the FPGA controller completes
the emotion recognition on the chip, it transmits the recog-
nition results together with the emotional characteristics of
all physiological signals to the graphical user interface of the
laptop via Bluetooth.

C. Al System-on-Chip Platform integrated with the LRCN
Chip Design

For real-time emotion classification, we implemented the
proposed LRCN model into a 16nm technology chip. The
EEG signal processing in the Spartan6 FPGA was first
converted into a 38*8 matrix with time, frequency, and initial
weight information and sent into the LRCN chip for affective
computing acceleration (the function block of the chip is
shown in Fig. 5).

The Top control center is responsible for arranging and
transmitting the 24-bit parallel input data to each computing,
controlling, and operating unit of the system, and also
compiling the output results after the arrangement.

The Forward calculation unit includes three layers of con-
volution, three layers of average pooling, one layer of LSTM,
one layer of full connection, and one layer of Softmax
operation. The main function of the Forward calculation unit
is to perform convolution and recursion with the weights
after training. The structure would then calculate, complete
the classification effect, and retain the calculation results for
each layer in the process. Consequently, the calculated results
would be the output of Back-propagation through the time
unit for weight update calculation.

In the Back-propagation through the time unit and the
Gradient update unit, the classification errors were first
calculated by the Forward calculation unit and then applied
with Back-propagation through the time (BPTP) method to
calculate the error contribution of each time-step of each
layer. The action of updating weights stopped until the
calculation error converged.
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V. SYSTEM EVALUATION AND PERFORMANCE
A. Dataset Description

The physiological data used for the algorithm evaluation
was recorded by the professional clinical psychologists in
Kaohsiung Medical University (KMU) [14]. In the KMU
study, sixty subjects were asked to induce four emotions
( happy, angry, sad, and neutral) through the recalling
of the subject’s personal experiences. Before the formal
collection of physiological data, the researcher would first
ask the participants to recall their emotional events. The
main purpose is to clarify that the participants recalled a
single emotional feeling (such as neutral, angry, happy, sad)
to the corresponding event, including the people, times,
places, and things at that moment. If the statement of the
participant contains complex emotions (for example, sad
and happy, love-hate), the researcher would guide them to
avoid inducing complex emotions in the following formal
data measurement. For each emotional state, signals were
collected for 15 minutes: 5 minutes for the statement period
(pre-training phase), 5 minutes for the recall period (mind-
training phase), and 5 minutes for the recovery period (post-
training phase).

B. LRCN Algorithm Validation

The LRCN classifier of the affective computing sys-
tem was conducted through leave-one-subject out validation
(LOSOV). Due to the time limitation of the real-time training
process, we selected 40 subjects from the KMU dataset for
validation. In LOSOV validation, the data of each subject is
treated as the validation set only and the data of the other
subjects are the training set. After the validation process of
all subjects is completed, the mean and standard deviation
of overall accuracies were considered as the validation per-
formance. The validation results are shown in Fig. 6. The
mean and the standard deviation of the accuracies are 77.41%
and 15.14% respectively for classifying 3 emotional states:
happiness, anger, and sadness. In the KMU dataset, there
was no certainty that neutral emotions would not be mixed
with other emotions during the experiment. To ensure the
integrity of the emotion classification model, we decided to
remove neutral emotion classification.

C. Comparison with other works

The comparison with other state-of-the-art works is shown
in Table.I. In our work, we achieve the mean accuracy
of 77.41% for 3-class classification on the KMU dataset.
Kwon et al. [15] achieve the mean accuracy of 76.56% for
binary classification with CNN as the classifier. [16] selects
the multi-phase CNN as the classifier which achieves the
mean accuracy of 83.36% for binary classification. However,
the subject-dependent method was adopted rather than the
rigorous cross-subject (subject-independent) validation. Song
et al. [4] proposes the DGCNN which uses a graph to model
the multi-channel EEG features. It achieves a mean accuracy
of 79.95%. The proposed LRCN model achieved better
classification and multi-class recognition rather than only
binary classes to further apply to more fields. To develop the

Subject Accuracy Subject Accuracy Subject Accuracy
(Happy- (GEO (GEO
Angry-Sad) Angry-Sad) Angry-Sad)
Subl 48.69% Subl5 60.32% Sub29 84.49%
Sub2 78.05% Subl6 77.14% Sub30 78.75%
Sub3 89.52% Sub17 93.33% Sub31 69.88%
Sub4 91.43% Subl8 84.76% Sub32 98.52%
Subs 79.4% Sub19 100% Sub33 70.44%
Sub6 56.18% Sub20 76.19% Sub34 93.33%
Sub7 54.86% Sub21 73.52% Sub35 72.3%
Sub8 93.48% Sub22 63.81% Sub36 83.81%
Sub9 56.33% Sub23 48.27% Sub37 72.38%
Subl10 56.19% Sub24 53.85% Sub38 90.54%
Subll 100% Sub25 93.33% Sub39 65.71%
Subl2 68.57% Sub26 88.57% Sub40 72.38%
Subl13 81.9% Sub27 95.24% Mean 77.41%
Subl4 92.5% Sub28 88.57% Std 15.14%

Fig. 6. The emotion classification accuracy of the proposed LRCN structure
for subject-independent validation

TABLE 1
COMPARISON OF OUR APPROACH WITH SOME LATEST WORKS

[15] [16] [4] This work
Signals EEG EEG EEG EEG
No. classes 2 2 2 3
No. subjects 32 32 15 52
Classifier CNN CNN DGCNN LRCN
Subject independent | dependent | independent | independent
Dependency
Accuracy 76.56% 83.36% 79.95% 77.41%

applicable affective computing system, fewer EEG channels
and fewer neural network layers should be considered which
was also realized in our work.

D. System-on-Chip Performance

The proposed LRCN chip layout and specification are
shown in Fig. 7. This chip has been implemented using
TSMC 16nm Fin-FET technology. The core size is 1.13
x 1.14 mm? and the on-chip SRAM is 221.3 Kbits. The
total power consumption of the chip is 48.24 mW. The chip
has training mode and testing mode and the on-chip training
processing time and testing processing time are 5.5 us and
1.9 us per sample respectively.
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Fig. 7.

Technology Process

TSMC 16nm

Operating Freq.

125MHz

Core Size 1.13 x 1.14 mm2
Core Voltage 0.8V
On-Chip SRAM 221.3 Kbits
Power 48.24 mw
Consumption
Training FPS 5.5us
Inference FPS 1.9 us

Chip layout of innovative LRCN structure and specification table




Fig. 8.
and physical status monitoring

A real-time displayed graphic user interface for emotion tracking

E. Real-time Emotion Monitoring with the Graphic User
Interface

The GUI platform of the laptop displayed the measured
raw data, the pre-processed data from the RISC-V processor,
and the 3-class emotion outputs given by the LRCN chip. For
real-time monitoring of human emotion variation, the graphic
user interface is designated as shown in Fig. 8. The Python
GUI runs on the end-user laptop and displays 4 of the 8
EEG channels. The probabilities of three emotions except
neutral emotions are calculated with the output result of the
LRCN chip. The final emotion is determined with calculated
probabilities and displayed through an emotional smiley icon.
For EEG analysis, the spectrum intensity of each EEG band
and the difference between two selected EEG channels are
both displayed for reference. As for emotion recognition,
we also applied the valence-arousal circumplex model for
real-time emotion tracking. The blue cross symbol location
displays the current emotion recognition result. Additionally,
the red line shows the emotion recognition result from the
previous to the present second.

VI. CONCLUSION

This study implemented a real-time affective computing
platform with an LRCN system-on-chip design and multiple
physiological signal processing systems, including wearable
EEG, ECG, and PPG sensors. The emotional features of the
ECG and PPG signals were extracted directly, while the EEG
emotional features were extracted by STFT for meaningful
data. The LRCN algorithm was used as the emotion classifier
due to the time-dependent characteristic, which improves the
emotion classification accuracy of the previous research by
using a CNN classifier. The classification accuracy of the
proposed LRCN model was evaluated by LOSOV with a
mean accuracy of 77.41%, improving the previous research
by using CNN classifier. The LRCN chip was implemented
using TSMC 16nm Fin-FET technology with the core area
of 1.13 x 1.14 mm? and the total power consumption of
48.24 mW. The training speed of the chip reaches 5.5 us
per sample, which allows the overall system to display
emotion classification results in 1 second. In conclusion,
the proposed platform is suitable for emotional and physical
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monitoring applications that require real-time emotional state
monitoring.
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