
  

  

Abstract— Finger movements play an important role in many 

daily human actions. Among the studies on the dexterity of 

fingers required for various tasks in neurology and simple 

evaluation tests, few have focused on detailed finger movements 

themselves. Therefore, in this study, we improved the hand 

motion measurement system using inertial sensors and the 

motion analysis method developed in our previous study and 

measured the motion of the upper limbs (including the fingers) 

during a general finger dexterity test. By applying singular value 

decomposition to the obtained joint angles and decomposing 

them into simpler movement units, we obtained the timing of 

each movement unit and the purpose of each movement as the 

coordination state of the joints. By applying hierarchical 

clustering to multiple trials in a finger dexterity test, we also 

determined the similarity between trials and investigated the 

characteristics of movements with higher dexterity. We 

investigated the motor characteristics in finger dexterity by 

analyzing our results. 

I. INTRODUCTION 

In recent years, demand has been increasing for the 
development of daily life support devices and workload-free 
environments based on human movement characteristics 
against the extension of healthy life expectancy and physical 
rehabilitation in super-aging societies and improving the 
efficiency of industrial activities. To meet these requirements, 
every kind of human movement must be evaluated for which 
appropriate measurements and analysis are required. In 
particular, hand movements must be analyzed because they are 
essential for a variety of life and work. These hand motions, 
which are collectively referred to as finger dexterity, 
invariably decline with age and are related to cognitive 
functions [1]. Therefore, understanding hand and finger 
dexterity in activities and assessing their movements are 
important to identify clumsy motions and to improve dexterity.  

Such research on dexterity has mainly been conducted in 
the neurotransmission and clinical fields [2], [3]. In addition, a 
pegboard, which is a common evaluation method for finger 
dexterity, is based only on the achievement time of a given 
movement [4], and insufficient examples focus on the motion 
state during dexterity movements. Although hand movements 
have previously been evaluated, most studies failed to 
scrutinize them as closely as the lower limbs or gaits. Instead, 
they were performed under such conditions as simplified 
models, movement restrictions, and only using the changes in 
external devices.  

Therefore, we focus on hand dexterity and meticulously 
measure the upper limb and finger movements with the inertial 
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sensor systems. Then from accurately acquired 3D joint angle 
changes, we studied the kinematic characteristics of dexterity 
by focusing on the coordination relationship of joints and 
timing. We used singular value decomposition (SVD) and 
clustering to analyze and visualize the characteristics as time 
transition and the coordination relationship of the joint angles 
related to the hand movements. 

II. METHODS 

A.  Measurement System and Sensor Postures 

We measure the upper limb movements included in the 
hand and fingers with hand-motion measurement system, and 
IMS-SD (Tec Gihan Co., Ltd., Japan). The former hand 
system has a total of 20, MEMS-type 9-axis inertial sensors 
with a compass (MPU9250, InvenSens), hereafter called the 
Inertial Measurement Unit (IMU). IMS-SD is a commercial 
wireless (Bluetooth) IMU system that outputs the identical 
kind values as the above system. By attaching both systems to 
the human upper limbs and measuring synchronously, we can 
measure the dexterity hand movements and their associated 
upper body parts (Fig. 1).  

The IMU postures (from the IMU to global coordinate 
systems) are estimated from their outputs, and the global 
coordinate system is defined so that the z-axis is vertical 
upward related to the direction of the gravitational acceleration, 
and the x-axis is the azimuth direction. In this study, we 
calculated the initial posture as Euler angles, and converted 
them to the quaternion, which was updated during movements 
by angular velocity. Since the integration error of angular 
velocity is often a problem in posture updates, in our previous 
study we corrected it using the constructed observation 
equations of an extended Kalman filter [5]. However, since 
that state and the observation equations are for Euler angles, 
we adapted them to quaternion by changing Euler to 
quaternion in the state equation and adding a constraint 
equation where the norm of the quaternion is 1 in the 
observation equation. 

 
Figure 1. IMU measurement systems and attachment positions 
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B. Hand and Upper Limb Link Models 

In our previous study, we proposed a method that estimates 
the body link length and made hand and finger models [5]. In 
this method, the position vectors from the target joint center to 
IMUs are estimated by combining the IMU outputs in the 
rotational motions of two joint axes in that joint and making a 
link model based on multiple position vectors and the relative 
relationships among IMUs. In this paper, the collarbone, the 
upper arm, the forearm, the hand, and each phalanx are 
assumed to be rigid bodies (segments), and one IMU of the 
measurement system is attached to each segment. Therefore, 
the fingertip position (the edge of the nth segment) in the global 
coordinate system (GPn) is calculated by regarding the 
sternoclavicular joint as the origin: 
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where R(qi) is a rotational matrix by the IMU quaternion 
posture on the ith segment, and ipi is the ith segment vector in 
the ith IMU coordinate system. The joint axes are identified 
from the joint rotation data during the above estimation and 
combined with the link vectors of each segment to define the 
coordinate system of each segment. The joint angle is defined 
as the relative postures (Euler angles) between the coordinate 
systems of the two segments adjacent to the target joint. 

C. Singular Value Decomposition and Clustering 

To analyze and evaluate finger dexterity, a movement is 
decomposed using SVD for the measured parameters (joint 
angles in this case). Because human dexterity movements are 
composed of more simple movement units, the movement 
units can be extracted (each decomposed mode) to understand 
the coordination relationship of the joints and the timing in 
each unit. We defined the joint angle matrix to which the SVD 
is applied as matrix A such that the row direction indicates the 
time variation and the column direction indicates each joint 
axis of each joint. Therefore, we obtained a decomposed 
result: 
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where Aave is the time average of A, left singular value vector 
u is the time history change that can be regarded as the timing, 
and right singular value vector v is the joint coordination and 
joint contribution. The diagonal component sm indicates the 
contribution of mth mode. N is the number of degrees of 
freedom of the joint and the number of columns of A. 

In addition, the decomposed results are expected to show 
differences among individuals and even among the same 
subject in identical types of movements. Therefore, we use 
agglomerative hierarchical clusters to classify the decomposed 
results in each mode to understand similar movement units. In 
agglomerative hierarchical clustering, several methods have 
calculated the distance between two clusters. In this study, we 
used Ward’s linkage method, which is an internal square 
distance used for classification in a previous research on 
walking [6]. Distance d between cluster l and r is calculated: 
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where || ||2 is the Euclidean distance, lx  and rx  are the 

centroids for u or v, and nl and nr are the number of elements 
of clusters r and s. We apply this method to the left and right 
singular value vectors, which are the above SVD results. Since 
the left singular value vector is time-series data, we treat the 
data of each time step as an observation value to understand 
the similarity of each trial and each mode. Since the movement 
times are different, the time step is resampled to make the 
identical lengths when clustering is applied. 

III. MEASURING EXPERIMENT OF HAND MOVEMENT  

The purpose of this study is to analyze human dexterity by 
measuring each joint angle and extracting and visualizing the 
characteristics involved in movements. In our study, we 
conducted the following two types of movement measurement 
experiments. The first experimental movement is a simple, 
repeated grasping in which the elbow is in the flexion to the 
extension state, and the forearm is pronation-rotated, and the 
fingers are flexed for grasping. The second experiment used 
the Purdue Pegboard Test, which evaluates finger dexterity. A 
human subject pinches a peg, adjusts its posture, and inserts it 
in a hole placed in a series. In these measurements, the two 
measurement systems described in Section II. A were attached 
to the subject (Fig. 1), and synchronous measurements were 
made at a sampling frequency of 100 Hz. Our experiments 
were conducted with one male subject in his twenties to study 
the differences between the identical movements by the same 
person. We explained our work to him, and he signed a consent 
form. The ethics review committee of Doshisha University 
approved the experiments.  

A. Measurement of Simple Grasping Movement 

To verify how effectively SVD assessed dexterity, we 
examined whether SVD and clustering can decompose a 
motion and extract the features contained in it. We measured a 
simple movement of opening a hand near the head and then 
grasping an object in front of the body. The results of 
decomposing the movements are expected to reveal their 
elements for adjusting the position and timing of the fingers to 
grasp an object and for adjusting the force during grasping. We 
defined the movement from the elbow’s maximum bending 
position to the next reference point as one trial and repeatedly 
measured it. However, the first trial was a continuous motion 
from the measurement’s start. To exclude the difference of the 
initial state in the repetitions, we extracted trials from the 
second trial. The measurement for 10 s including the static 
time for calculating initial postures 2 s, was twice. 

B. Result and Discussion of Simple Grasping Movement 

From the twice measurements performed by our subject, 
four trials were extracted. The SVD results for each trial and 
each mode up to the seventh mode (where the cumulative 
contribution was 90%) of the left and right singular value 
vectors were clustered. Up to the fourth mode (an average 
contribution of 3.9% and an average cumulative contribution 
of 80%), the same number of modes were clustered with 
distance thresholds of 1.0-1.6 (left) and 1.4-2.1 (right). The 
result of the left and right singular value vectors of the 1st-4th 
modes for one representative trial are shown in Figs. 2 and 3. 
Fig. 2 shows the time variation, which is the left singular value 
vector, and Fig. 3 shows the degree of change in the joint 
angles, which is the right singular value vector. The 1st mode 
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Figure 2. Time variation of left singular value vectors in simple grasping 

 
Figure 3. Joint distribution of right singular value in simple grasping 

 

with a 47.5% contribution shows a hand movement to a 
grasping position by elbow extension and the sternoclavicular 
joint, and the hand posture is simultaneously adjusted by the 
forearm pronation. The 2nd mode (18.5 %) shows the fingers 
opened once by extension and then flexed to grasp after 
moving in the first mode. In addition, the posture was adjusted 
for easy grasping by combining elbow flexion and wrist 
extension. The 3rd mode shows a braking movement and 
adjusting by forearm supination in the opposite of the 
pronation direction in the first mode up to 0.6 s. The 4th mode 
shows an adjustment to move to the target position because the 
elbow flexion/extension shows a sine curve in the extension in 
the first half of the first mode and an inverse sine curve in the 
flexion in the second half of the first mode. Therefore, using 
this method, the main movement of the entire movement can 
be extracted to understand the joint coordination and timing 
and to evaluate the adjustment components that are expected 
to produce more dexterity.  

C. Measurement of Pegboard Test 

To evaluate the motion dexterity, the right hand (dominant) 
and the upper limb movement during the general Pegboard 
Test were measured. To measure the entire dexterity test (30 
s), the measurement was performed for 40 s, including the 
static time. We defined one trial is process of pinching a peg, 
inserting it into a hole, and pinching the next peg during the 
entire measurement. We extracted some trials. However, for 
the same reason as in Section III. A and B, we excluded the 
first trial. Six trials from the 2nd to the 7th trial were analyzed 
to prevent the influence of an increase in the moving distance 
to the hole position and a decrease of the difference due to 
habituation. 

D. Result and Discussion of Pegboard Test 

In this experiment’s analysis, we focused on the thumb and 
index and middle fingers because the IMU outputs on the ring 
and little fingers were abnormal and had no effect on the 
dexterity test. The trial times of the extracted 2nd-7th trials were 
1.64 s, 2.15 s, 1.69 s, 1.89 s, 2.46 s, and 1.92 s. According to 
the dexterity test in a previous study, the average score (43 
healthy subjects, 52.2 years old) was 14.7 pegs in 30 s for an 
average time per peg of about 2 s [4]. Therefore, in this 

extraction trial, we roughly divided the trials as follows the 2nd 
and 4th trials into an early group, the 5th and 7th trials into an 
average group, and 3rd and 6th trials into a late group. Because 
his score was 17 pegs (1.76 s) in the pre-test without the 
measurement system, the 2nd and 4th trials seem less affected 
by the attached IMU system and show sufficient dexterity. 
Therefore, we analyzed the 2nd trial as the most dexterous 
movement.  

First, Fig. 4 and 5 show the results of clustering the left and 
right singular value vectors up to the 7th mode, where the 
cumulative contribution was 90%, as in Section III. B. When 
we clustered them with an average distance threshold width of 
1.4 (right) and 1.7 (left) from Section III. B, there were 
differences from the 3rd mode onward. Therefore, the cluster 
numbers based on the 2nd trial decomposition mode (C1, C2, 
…, C7) shown in the figures were used in the following 
description. From the figures, the 1st and 2nd modes showed 
similar behavior regardless of the trial times. In the four trials 
with short times (the early and average groups), the 
combinations of joint conditions (right vector) and timing (left 
vector) are consistent, although the order differs up to the 6th 
mode, for the slow trials, the clusters of right and left vectors 
were different, suggesting that the movements with high 
contribution in a trial have appropriate time-series waveform 
shape and timing. 

Next, to verify the timing in detail, the left singular value 
vectors of the 2nd (early group), the 7th (average) and the 6th 
(slow) trials are shown in Fig. 6 as representative trials. 
Because the joint relationship and the movement’s purpose are 
also important in timing verification, the right singular value 
vector distribution and representative reconstructed link 
models (from Aave and each smumvm

T in (2)) for the 2nd trial are 
shown in Figs. 7, 8. In the 1st mode, the trials’ main elements 
are performed simultaneously: moving to the target hole 
position (elbow flexion), the overall postural adjustment of the 
peg (forearm supination and wrist extension), and a light grip 
(each finger joint). The 2nd mode had a sine curve shape and 
showed that the peg posture was adjusted by three fingers at 
the convex part to complement the arm’s postural element in 
the 1st mode. Based on a comparison of the three group trials, 
perhaps adjusting the peak of the 2nd mode aligned it to match  

 
Figure 4. Clustering result of left singular value vectors in pegboard test 

 
Figure 5. Clustering result of right singular value vectors in pegboard test 
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Figure 6. Time variation of left singular value vectors in pegboard test 

  
Figure 7. Joint distribution of right singular value in pegboard test 

 
Figure 8. Measured (Left Upper) and decomposed representative mode 

 (1st-3rd) reconstructed link models at 0.5 s in 2nd trial 
 

the maximum arrival point of the 1st mode. Then it was 
considered possible to quickly adjust the peg posture by 
fingers to insert, by reflecting the situation of the peg posture 
and the hole position by the arm moving in the 1st mode. 
However, in the 6th trial (slow), little postural adjustment was 
performed by the fingers, and the lower contribution mode 
oscillated near the time of the peg insertion after the movement, 
suggesting that postural adjustment took time. C3 was 
pinching the peg by the fingers and the hand’s downward 
movement, and C4 was its release by the fingers and an 
upward movement. As in the 3rd mode, C3 appeared in the first 
half trials and C4 in the second half, suggesting that the 
priority of the pinching and releasing movements were 
switched by the moved distance, although they did not 
significantly affect the trial time. In the remaining clusters, C5 
was the moving adjustment, C6 was the pinching and releasing 
adjustment, and C7 was the fine postural adjustment. From the 
Fig. 6 and movement type, we considered that an important 
factor in this dexterity test was the influence of the initial 
timing of each mode. In 2nd and 7th trials, the initial rise of 
modes other than C1, C2 and C5 were rapid. In particular, 
focusing on the relationship between the rise timing of C3 for 
pinching a peg and C2 for adjusting a peg posture, the 
transition in the 2nd trial from C3 to C2 related to the fingers' 
movement was smooth because the peg posture was adjusted 

after the peg was stably pinched. In contrast, in the 7th trial, the 
rise of C3 was the same as in the 2nd trial, but the transition to 
C2 started before the pinching in C3 became stable. In the 6th 
trial, the rise of C3 was slow, and it is highly possible that the 
transition to C2 was not successful because the pinching was 
not stable, leading to the oscillatory waveform described 
above. Therefore, it is important to perform C1-3, which are 
high contribution movements, at the appropriate timing, and it 
is possible to understand the movement situation in the 
dexterity test in addition to time indices. 

Therefore, these results suggest that primary movements 
with large joint changes should be performed with a single 
synchronized timing waveform as much as possible. Dexterity 
movements are performed by matching the timing of low 
contribution with respect to such movement timings, and the 
transition timings between movements that are mainly 
homogeneous joint movements such as C2 and C3 are 
particularly important. Furthermore, the results suggest that if 
a large amount of information on each mode and the 
classification results from clustering can be stored and 
converted into a database, judgments can be made about 
dexterity and used for suggesting behavioral improvements 
based on comparison with a database when the results of the 
dexterity tests of new subjects are obtained. 

IV. CONCLUSION  

We extracted time-series joint angles from upper limb 
movements, including fingers that were measured in detail by 
IMU systems, and applied SVD and clustering to them. For the 
hand movement of a finger dexterity test, we identified 
appropriate timing and joint coordination in high dexterity 
trials. Unfortunately, we only collected data from a single 
subject. Future research must increase the number of subjects 
and simultaneously acquire and analyze such factors as the 
peg’s posture and the amount of force from the fingertips. 
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