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Abstract— Convolutional neural networks have become pop-
ular in medical image segmentation, and one of their most
notable achievements is their ability to learn discriminative
features using large labeled datasets. Two-dimensional (2D)
networks are accustomed to extracting multiscale features with
deep convolutional neural network extractors, i.e., ResNet-
101. However, 2D networks are inefficient in extracting spatial
features from volumetric images. Although most of the 2D seg-
mentation networks can be extended to three-dimensional (3D)
networks, extended 3D methods are resource and time intensive.
In this paper, we propose an efficient and accurate network for
fully automatic 3D segmentation. We designed a 3D multiple-
contextual extractor (MCE) to simulate multiscale feature
extraction and feature fusion to capture rich global contextual
dependencies from different feature levels. We also designed a
light 3D ResU-Net for efficient volumetric image segmentation.
The proposed multiple-contextual extractor and light 3D ResU-
Net constituted a complete segmentation network. By feeding
the multiple-contextual features to the light 3D ResU-Net, we
realized 3D medical image segmentation with high efficiency
and accuracy. To validate the 3D segmentation performance
of our proposed method, we evaluated the proposed network
in the context of semantic segmentation on a private spleen
dataset and public liver dataset. The spleen dataset contains 50
patients’ CT scans, and the liver dataset contains 131 patients’
CT scans.

I. INTRODUCTION

Segmentation of abdominal organs from computed to-
mography (CT) images is a crucial and time-consuming
task. Recently, deep learning-based methods have achieved
impressive success in dealing with segmentation problems
of medical images. This success is largely attributed to
fully convolutional neural networks (FCNs) [1], [2], [3].
The literature can be classified into two categories. One is
based on 2D FCNs [1], [2], and the other category is 3D
FCNs [3]. In the field of 2D FCNs, recent works rely on
multi-scale contest fusion improve the discriminative ability
of feature representations [4], [5], [6], [7]. They all utilize
deep convolutional neural networks that aggregate contextual
multiscale information, [5] also applies feature pyramid
for feature maps fusion. [7] employs ResNet-101 [8] as
their multiscale feature extractor, different depth of network
layers represent different level image representations. These
strategies may help to capture objects at different scales, but
2D convolutions still lack the spatial connection between
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volumetric images and the spatial information deficiency
negatively affects these 2D FCN-based method performance.

Alternatively, in order to solve the lack of spatial infor-
mation of 2D FCN-based methods, 3D FCN-based methods
have been widely studied in recent years. In the field of
3D FCNs, 2D convolutions are replaced by 3D kernels
with volumetric data input [9], [10], [11]. Three-dimensional
convolutional kernel reflects competitiveness at extracting
features from voxel for 3D segmentation. However, 3D
FCNs generate numerous training parameters, and standard
GPU devices cannot handle large amounts of 3D data for
processing with sophisticated backbone structures. Take 3D
U-Net [10] for example, its symmetric encoder-decoder
structure costs excessive computing resources, and results in
low applicability for handling the problems of distribution
imbalance between foreground and background, prediction
detail losing, and overfitting.

In order to address all these issues, several previous works
inspired us to design an efficient and accurate semantic
segmentation network for medical volumetric images. First,
we employed our multiple-contextual extractor (MCE) as
the short-range feature extractor for global feature fusion.
Additionally, we set the 3D residual block as a backbone.
The block was responsible for extracting local features and
increasing network depth. Finally, we optimized a light 3D
ResU-Net for generating highly accurate biomedical image
segmentation results.

On the basis of the above-mentioned works and insights,
in this paper, we propose a unified 3D multiple-contextual
semantic segmentation network, which is designed to achieve
3D segmentation from medical volume images in an end-
to-end manner. Compared with other segmentation models,
our proposed model achieves more advanced accurate results
with efficient computation time. Sufficient ablation studies
were conducted on two datasets which demonstrated the
superiority of our proposed method. Each component from
our method validates the following main contributions: (I) we
propose a 3D unified segmentation framework for medical
volumetric images. The asymmetric framework structure of
the proposed method is more efficient and accurate than other
symmetric structure segmentation methods; (II) we propose a
3D multiple-contextual extraction (MCE) module to improve
global and local feature identification; (III) we employ 3D
residual block as the backbone to build a light 3D ResU-
Net. The light 3D ResU-Net is able to achieve segmentation
efficiently.

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 3309



Light 3D ResU-Net

Residual Block     Downsample     Upsample            Concat

Residual Block 1 Residual Block 2

Fusion 1

Fusion 2

Multiple-contextual Extractor

36

36

72

72

144

Fig. 1. The illustration of our proposed network. The network consists of
a multiple-contextual extractor and a light 3D ResU-Net for efficient and
accurate segmentation.

II. METHODS
A. Overview

The overview of the proposed framework is depicted in
Fig. 1. Traditional 2D FCN-based methods for segmentation
generally use long-range feature extractor to generate mul-
tiscale feature representations. However, long-range feature
extractor may overuse high-level features and generate enor-
mous parameters in 3D FCNs which results in reducing seg-
mentation performance and generating overfitting. To avoid
these problems, we propose a multiple-contextual extractor
(MCE) as a substitute for long-range feature extractor in
3D FCNs. We first put preprocessed images into MCE for
gathering and fusing global contextual features. Meanwhile,
the 3D residual block is set as the backbone of the whole
network for capturing local features. With the help of our
MCE and residual block, global and local features are
merged together. Then, the fused features are fed into our
light 3D ResU-Net. Our MCE and light 3D ResU-Net are
trained to minimize the difference between predictions and
ground truths with an end-to-end manner.

B. Multiple-Contextual Extractor

To set up an efficient and accurate 3D segmentation net-
work, we focus on designing a competent network structure
for acquiring image features. Inspired by the multiscale
feature extraction strategy [7] in 2D FCNs, which helps in
collecting global and local features, we propose MCE for our
3D segmentation network. In this setting (Fig. 2), we first ob-
tain different contextual features Fc1 and Fc2, where Fc1 and
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Fig. 2. The structure of our multiple-contextual extractor. The multiple-
contextual features are extracted and fused by twice fusion and twice
residual block conduction.

Fc2 indicate low and high-level contextual features, respec-
tively. Because Fc2 obtained from residual blocks twice and
downsampled once, it is a higher feature representation. We
employ trilinear interpolation to ensure different levels of in-
formation at the same resolution. Then, Fs1 whcih is obtained
from different level contextual features, is added, forming an
initial multiple-contextual feature map, Fs1 = conv([Fc1,Fc2]).
To preserve input data informationn, Fs2 is also used for a
more detailed feature map, Fs2 = conv([Fc1,Fs1]). Thus, Fs2
encodes low-level detailed contextual features from shallow
layers and high-level semantics learned from deeper layers.
Then, this new multiple-contextual feature map is combined
with different scales information and fed into the light 3D
ResU-Net, Seg = RBs(conv([Fc1,Fs1])), where RB represents
each residual block. Specifically, we set the number of
channels invariable in our MCE (e.g. 36.), and this setting is
not only for fitting add steps but also for encoding a more
efficient feature representation, which means only limited
and necessary features can go through our block.

C. Light 3D ResU-Net

As introduced earlier, the efficiency and accuracy of the
network are the primary goal which need to be achieved. For
utilizing limited computing resources and reducing overfit-
ting, we design a light 3D ResU-Net. Compared with the 3D
deep FCNs such as 3D U-Net [10]. To avoid of overfitting,
we reduce the steps of high-level feature reusing. Meanwhile,
we utilize residual block as the backbone not only for
extracting local features but also for increasing the depth of
the netwrok. Our light structure gneerates more competitive
results, and it is also able to learn hierarchical representations
from multiple-contextual informations. Using proposed MCE
and 3D residual block, global and local features are extracted
and fused. To achieve segmentation, Dice coefficient [12]
loss function is employed. The Dice loss function is defined
as follows:
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Fig. 3. The illustration of 3D residual block. As the backbone of our
proposed network , 3D residual block is responsible for generating local
features and offsetting the depth of our network.

Ld(P,G) = 1−2× ∑
N
i=1 pigi +σ

∑
N
i=1 pi +∑

N
i=1 gi +σ

(1)

where sums are calculated over the N pixels, the predicted
volume pi ∈ P, the ground truth volume gi ∈ G and σ is a
smoothness term to avoid division by 0. In the optimization
stage, the Dice loss is minimized by gradient descend using
the following derivate equation:

∂Ld(P,G)

∂ pk
=−2×∑

N
i=1 pigi−gk ∑

N
i=1(pi +gi)

[∑N
i=1(pi +gi)]2

(2)

D. 3D Residual Block

The structure of 3D residual block is shown in Fig. 3. We
set 3D residual block as the backbone of the network, small
33 kernels are used which are faster to convolve with and
contain less parameters. When compared to larger kernel size
for 3D computation, the small kernels provide high efficiency
and accuracy. The 3D residual block can enhance depth of
the network, and it also can prevent image detail losing
by over using downsample steps to generating high level
features. Besides, we adopt instance normalization technique
to all hidden layers, which accelerates the convergence of the
network and preserve each feature maps instance separately.

III. EXPERIMENTS AND RESULTS

A. Datasets and Implementation

Our proposed network trained and tested on two different
datasets: one was a private spleen dataset, and the other
was a public liver dataset. The spleen dataset was collected
from Shiga University of Medical Science Hospital and had
passed ethical approval. It contained 50 CT volume data
with a resolution of 1.0 mm and slice spacing from 1.0
to 2.0 mm, we applied 41 scans for training and 9 scans
for testing. The liver segmentation dataset was collected
from MICCAI 2017 LiTS Challenge, which contained 131
contrast-enhanced 3D abdominal CT scans. The liver dataset
is acquired by different doctors with a big variety resolution
of 0.55 mm to 1.0 mm and slice spacing from 0.45 mm to
6.0 mm, we applied 103 scans for training and 28 scans
for testing. Target spleen and liver areas were labeled by
experienced doctors. For image preprocessing, we truncated
the image intensity values of all scans to a range of [-
200, 250] HU to remove the irrelevant details. For spleen
dataset, we resampled images into 2.0×2.0×2.0 mm3. For
liver dataset, we resampled images into 2.0×2.0×5.0 mm3.
The parameters of the network were initialized with random
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Fig. 4. The prediction compararision between our proposed network and
3D U-Net

Spleen Segmentation                                                              Liver Segmentation

Fig. 5. The 3D prediction examples of our methods on two organs
segmentation. Green indicates true positives; red indicates false positives;
blue indicates false negatives.

values. Our proposed method was evaluated using three
quantitative metrics, including the Dice similarity coefficient
(Dice), volumetric overlap error (VOE) and the Jaccard
index. We also calculated average prediction times for full
3D data of each model.

B. Quantitative Comparison

In this section, we compared the proposed network with
3D U-Net [10]. Because 3D U-Net is a standard deep
multiscale feature extraction and fusion network, and its
encoder-decoder structure is similar to our light 3D ResU-
Net. We set the baseline as the light 3D ResU-Net without
our multiple-contextual extractor (MCE). We normalized all
preprocessed data image intensity into the range of [0, 1] for
training and testing.

Table 1 shows that with 3D residual block, our light 3D
ResU-Net is better than 3D U-Net. Our light 3D ResU-
Net with MCE also achieves a surpassing performance over
3D U-Net. After 5-fold cross-validation, we set the average
scores as the final results. Fig. 4 exhibits the segmentation
results of proposed network and 3D U-Net on two different
datasets. The volume predictions are shown in Fig. 5. It can
be observed that our proposed method accurately localizes
and predicts organs.

C. Comparison with State-of-the-Art Methods

To demonstrate the predominance of our proposed method,
we evaluated the performance of our network by comparing
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TABLE I
QUANTITATIVE COMPARISON BETWEEN 3D U-NET AND PROPOSED METHOD. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Methods Spleen Segmentation Liver Segmentation

Dice VOE (%) Jaccard Time (s) Dice VOE (%) Jaccard Time (s)
3D U-Net [10] 0.836 15.79 0.743 5.231 0.912 13.61 0.814 5.341

Light 3D ResU-Net 0.877 12.92 0.788 0.478 0.927 8.83 0.874 0.489
Light 3D ResU-Net + MCE 0.911 9.69 0.839 0.518 0.947 4.53 0.915 0.526

TABLE II
COMPARISON OF PROPOSED METHOD WITH THE STATE OF THE ART METHODS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Methods Spleen Segmentation Liver Segmentation

Dice VOE (%) Jaccard Time (s) Dice VOE (%) Jaccard Time (s)
V-Net [9] 0.887 12.34 0.809 5.451 0.936 6.77 0.897 5.495

VoxResNet [13] 0.872 12.76 0.755 2.791 0.921 7.93 0.863 2.483
3D DSD-FCN [14] 0.843 11.67 0.762 4.793 0.929 8.77 0.854 4.677
MultiResUNe [15] 0.883 11.89 0.792 4.895 0.932 6.89 0.892 5.034

Proposed 0.911 9.69 0.839 0.518 0.947 4.53 0.915 0.526

it with state-of-the-art methods for spleen and liver segmen-
tation: our proposed method, V-Net [9], VoxResNet [13], 3D
DSD FCN [14] and MultiResUNet [15]. All results were
directly predicted from single-model training and testing
without relying on any post processing tools. Moreover, all
networks were optimized by the initial loss functions in their
own papers, and passed 5-fold cross-validation to get final
average scores. We provide these results for reference and
emphasize benefits of our proposed method for volumetric
medical image segmentation. Table 2 summarizes the com-
parison results. As it can be seen, attributing to the light
design MCE module and ResU-Net, our method outperforms
other previous approaches on prediction time cost during
the test stage, and it is worth noting that the proposed
method also exceeds other results on the liver and spleen
segmentation accuracy.

IV. CONCLUSIONS

In this paper, we presented a 3D unified semantic segmen-
tation network for medical volumetric images. Our proposed
network consists of a MCE module and a light 3D ResU-
Net. The proposed MCE and 3D residual block are capable
of gathering global and local features from images, and light
3D ResU-Net is able to complete organ segmentation effec-
tively. Compared with state-of-the-art methods, our proposed
method benefiting from its progressive structure, achieved ef-
ficient computing resource usage and accurate segmentation.
After comprehensive experiments, the comparison results are
listed above. We believe that our proposed network can be
applied to other medical image segmentation tasks. Some
limitations are presented to optimize future work.
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