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Abstract— Auscultation of respiratory sounds is the primary
tool for screening and diagnosing lung diseases. Automated
analysis, coupled with digital stethoscopes, can play a crucial
role in enabling tele-screening of fatal lung diseases. Deep
neural networks (DNNs) have shown potential to solve such
problems, and are an obvious choice. However, DNNs are data
hungry, and the largest respiratory dataset ICBHI has only 6898
breathing cycles, which is quite small for training a satisfactory
DNN model. In this work, RespireNet, we propose a simple
CNN-based model, along with a suite of novel techniques—
device specific fine-tuning, concatenation-based augmentation,
blank region clipping, and smart padding—enabling us to
efficiently use the small-sized dataset. We perform extensive
evaluation on the ICBHI dataset, and improve upon the state-
of-the-art results for 4-class classification by 2.2%.

Code: https://github.com/microsoft/RespireNet

I. INTRODUCTION

Respiratory diseases like asthma, chronic obstructive pul-
monary disease (COPD), lower respiratory tract infection,
lung cancer, and tuberculosis are the leading causes of death
worldwide [1]. Early diagnosis has been found to be crucial
in effectively treating respiratory diseases and reducing their
adverse effects on the length and quality of life. Listening
to chest sounds using a stethoscope is a standard method
for screening and diagnosing lung diseases. It provides a
low-cost and non-invasive screening methodology, avoiding
the exposure risks of radiography and patient-compliance
requirements associated with tests such as Spirometry.

There are a few drawbacks of stethoscope-based diagnosis:
requirement of a trained medical professional to interpret
auscultation sounds, and subjectivity in interpretations caus-
ing inter-listener variability. These limitations are exacer-
bated in impoverished settings and during pandemic situa-
tions (such as COVID-19), due to shortage of expert medical
professionals. Automated analysis of respiratory sounds can
help in alleviating these drawbacks, and also help in enabling
tele-medicine applications to monitor patients outside a clinic
by less-skilled workforce such as community health workers.

Algorithmic detection of lung diseases from respiratory
sounds has been an active area of research [2, 3], especially
with the advent of digital stethoscopes. Most of these works
focus on detecting abnormal respiratory sounds of wheeze
and crackle. Wheeze is a typical symptom of asthma and
COPD, characterized by a high-pitched continuous sound
in the frequency range of 100-2500Hz and duration above
80 msec [3, 4]. Crackles, which are associated with COPD,
chronic bronchitis, pneumonia and lung fibrosis [5, 6], have
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Fig. 1. Overview of proposed RespireNet framework. We pre-process the
audio signal (bandpass filtering, downsampling, normalization, etc.), apply
concatenation-based augmentation and smart padding, and generate the
Mel-spectrogram. Blank region clipping is applied to remove blank regions
in the high frequency ranges. The processed spectrogram is then used to
train our DNN model via a two-stage training. Stage-1: the model is trained
using entire train set. Stage-2: device specific fine-tuning which trains using
subset of data corresponding to each device.

a discontinuous, non-tonal sound, with frequency of ∼650
Hz and duration of 5 msec (for fine crackles), or frequency
of 100-500 Hz and duration of 15 msec (for coarse crackles).

Although early works on abnormal lung sounds detection
focused on hand-crafted features and traditional machine
learning [7, 8], more recently, deep learning based methods
have been explored [9, 10, 11]. For training DNNs, a time-
frequency representation of the audio signal, such as Mel-
spectrograms [10, 12, 13], stacked MFCC features [9, 12,
14, 15, 16], or optimized S-transform spectrogram [17] has
been used. This 2D “image” is then fed into CNNs [14, 15],
RNNs [9, 18], or hybrid CNN-RNNs [10] to learn robust
high dimensional representations.

It is well known that DNNs typically require large datasets
to achieve good performance. In this work, we use the
ICBHI respiratory sound challenge dataset [19]. Despite
being the largest publicly available dataset, it has only 6898
breathing cycle samples, which is quite small for training
deep networks. Thus, a big focus of our work has been on
developing a suite of techniques to help train DNNs in a data
efficient manner. For that, we analyzed the ICBHI dataset
extensively, and found several characteristics of the data that
might inhibit training DNNs effectively. For example, the
dataset contains audio recordings from four different devices,
with skewed distribution of samples across the devices.
Similarly, the dataset has a skewed distribution across normal
and abnormal classes, and varying lengths of audio samples.

We propose multiple novel techniques to address these
problems—device specific fine-tuning, concatenation-based
augmentation, blank region clipping, and smart padding.
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Combined with these techniques, we found that a simple
CNN architecture, such as ResNet, was able to achieve
high accuracy. This is in contrast to prior work employing
complex architectures, like hybrid CNN-RNN [10], non-
local block additions to CNNs [11], etc. Finally we perform
extensive evaluation and ablation analysis of our model,
RespireNet, improving upon the state-of-the-art results for
4-class classification by 2.2%.
The main contributions of our work are:

1) demonstrate that a simple network architecture is suf-
ficient for respiratory sound classification, and more
focus is needed to make efficient use of available data.

2) a detailed analysis of the ICBHI dataset pointing out its
characteristics impacting DNN training significantly.

3) a suite of techniques—device specific fine-tuning,
concatenation-based augmentation, blank region clip-
ping, smart padding—enabling efficient dataset usage.
These techniques are independent of network architec-
ture and can be easily incorporated in other networks.

II. METHOD

Dataset: We perform all evaluations on the ICBHI scientific
challenge respiratory sound dataset [19]. The dataset com-
prises of 920 recordings from 126 patients with a combined
total duration of 5.5 hours. Each breathing cycle in a record-
ing is annotated by an expert as one of the four classes:
normal, crackle, wheeze, or both (crackle and wheeze). The
dataset comprises of recordings from four different devices1

from hospitals in Portugal and Greece. For every patient,
data was recorded at seven different body locations.
Pre-processing: The sampling rate of recordings in the
dataset varies from 4 kHz to 44.1 kHz. To standardize,
we downsample the recordings to 4 kHz, and apply a 5-
th order Butterworth band-pass filter to preserve frequencies
in the range of 50-2000 Hz and to remove noise (heartbeat
sound, background speech, etc.). Since the audio is recorded
using different devices in different environments, we apply
standard normalization on the input signal to map the values
within the range (-1, 1). The audio signal is then converted
into a Mel-spectrogram (similar to [10, 12, 13]), which is
fed into our DNN.
Network architecture: We use a CNN-based network (Figure
1), ResNet-342, followed by two 128-d fully connected linear
layers with ReLU activations. The last layer applies softmax
activation to model classwise probabilities. Dropout is added
to the fully-connected layers to prevent overfitting. The
network is trained via a standard categorical cross-entropy
loss to minimize the loss for multi-class classification.

A. Efficient Dataset Utilization
To efficiently use the available 6898 samples, we exten-

sively analyzed the dataset to identify characteristics that
inhibit training DNNs effectively, and propose solutions to
overcome the same. The first commonly used technique

1The four devices used for recordings are AKGC417L Microphone,
3M Littmann Classic II SE Stethoscope, 3M Litmmann 3200 Electronic
Stethoscope, and WelchAllyn Meditron Master Elite Electronic Stethoscope.

2ResNet-18 performed poorly compared to ResNet-34, while ResNet-50
performed similar to ResNet-34.

we apply is transfer learning, where we initialize our net-
work with weights of a pre-trained ResNet-34 network on
ImageNet [20]. This is followed by training the network
end-to-end. Interestingly, even though ImageNet dataset is
very different from our Mel-spectrograms, we still found
this initialization to help significantly. Most likely, low level
features such as edge-detection are still similar and thus
“transfer” well.
Concatenation-based Augmentation: Like most medical
datasets, ICBHI dataset has a huge class imbalance, with
the normal class accounting for 53% of the samples. To
prevent the model from overfitting, we experimented with
several data augmentation techniques. We first apply standard
audio augmentation techniques, such as noise addition, speed
variation, random shifting, pitch shift, etc., and also use
a weighted random sampler to sample mini-batches uni-
formly from each class. These standard techniques help a
little, but to further improve generalization of the under-
represented classes (wheeze, crackle, both), we developed
a concatenation-based augmentation technique where we
generate a new sample of a class by randomly sampling
two samples of the same class and concatenating them (see
Figure 2). This scheme led to a non-trivial improvement in
the classification accuracy of abnormal classes.

Fig. 2. Proposed concatenation-based augmentation.

Smart Padding: The breathing cycle length varies across
patients as well as within a patient due to various factors
(e.g., breathing rate can increase during fever). In the ICBHI
dataset, the length of breathing cycles ranges from 0.2s to
16.2s (mean=2.7s). This poses a problem while training our
network as it expects a fixed size input3. The standard way
to handle this is to pad the audio signal to a fixed size
via zero-padding or reflection-based padding. We propose
a novel smart padding scheme, which uses a variant of
our augmentation scheme. For each data sample, smart
padding examines the breathing cycle sample for that patient
taken just before and after the current one. If either of the
neighbouring cycle is of the same class or of the normal
class, we concatenate the current sample with it. If not,
we pad by copying the same cycle again. We continue this
process until we reach our desired size. This padding scheme
also augments data and helps prevent overfitting.
Blank Region Clipping: On analyzing samples using Grad-
Cam++ [21] which our base model misclassified, we found
significant blank regions4 at higher frequency regions of their
spectrograms (Figure 3). On further analysis, we found that
many samples had blank region in the 1.5-2kHz frequency
range (e.g., 20% of samples from the Meditron device
had 1.5-2kHz frequency range missing, while all Litt3200
device samples had the same 1.5-2kHz frequency missing).

3CNNs can be made size agnostic by using adaptive average pooling,
however that typically hurts accuracy.

4Blank region in a spectrogram means that the audio signal has zero
energy in the corresponding audio frequency range (Figure 3a).
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Fig. 3. Blank region clipping: The network attention [21] starts focusing on
the bottom half of the spectrogram, instead of blank spaces, after clipping.

This causes a sharp discontinuity (edges) between ‘data’
region and these blank regions, which adversely impacts the
CNN model, as the initial few layers are known to detect
edges [22]. Since it was hurting our network performance,
we selectively clip off the high frequency blank regions from
the spectrograms. The blank region clipping has no impact on
samples having information in the higher frequency ranges,
and those samples are used as is. This ensures that (1) no
useful information gets pruned, and (2) the CNN is not
confused by the sudden discontinuity caused by the blank
regions, thus improving performance.
Device Specific Fine-tuning: The ICBHI dataset has sam-
ples from 4 different devices. We found that the distribution
of samples across devices is heavily skewed, e.g. 63%
samples are recorded using the AKGC417L Mic (Table III).
Since each device has different audio characteristics, the
DNN may fail to generalize across devices, especially for
the underrepresented devices in the already small dataset.
To verify this, we divided the test set into 4 subsets based
on the device type, and compute the accuracy of abnormal
class samples in each subset. As expected, we found the
classification accuracy to be strongly correlated with the
training set size of the corresponding device. To address this,
we first train a common model with the full training data
(stage-1, Figure 1). We then make 4 copies of this model and
fine-tune (stage-2) them for each device separately by using
only the subset of training data for that device. We found
this approach to significantly improve the performance, es-
pecially for the underrepresented devices (Table III).

III. EXPERIMENTS

We evaluate the performance of our framework on the res-
piratory anomaly classification task proposed in the ICBHI
challenge [19]. It consists of two subtasks: (i) classify a
breathing cycle into one of the four classes–normal(n),
crackle(c), wheeze(w), both(b), and (ii) classify a breathing
cycle into normal or abnormal class, where abnormal =
{crackle, wheeze, both}. The final score is computed as
the mean of Sensitivity: Se = Pc+Pw+Pb

Nc+Nw+Nb
and Specificity:

Sp = Pn

Nn
, where Pi and Ni are the number of correctly

classified and total number of samples in class i, respectively
(i ∈ {normal, crackle, wheeze, both}). For the 2-class
case, we adopt the abnormal and normal class scores as Se

and Sp respectively, and the score is computed as their mean.
We compare our performance using the above evaluation

metric on two dataset divisions: the official 60-40% split
[19] and 80-20% split [10, 11, 23] for train-test5. For the

5For both the splits, the train and test set are patient-wise disjoint.

Split & Task Method Sp Se Score

60-40 Split Jakovljevic et al. [7] - - 39.5%
& Chambres et al. [8] 78.1% 20.8% 49.4%

4-class Serbes et al. [24] - - 49.9%
Ma et al. [23] 69.2% 31.1% 50.2%

Ma, Xu, and Li [11] 63.2% 41.3% 52.3%
CNN (ours) 71.4% 39.0% 55.2%

CNN+CBA+BRC (ours) 71.8% 39.6% 55.7%
CNN+CBA+BRC+FT (ours) 72.3% 40.1% 56.2%

80-20 Split Kochetov et al. [9] 73.0% 58.4% 65.7 %
& Acharya et al. [10] 84.1% 48.6% 66.3%

4-class Ma, Xu, and Li [11] 64.7% 63.7% 64.2%
CNN (ours) 78.8% 53.6% 66.2%

CNN+CBA+BRC (ours) 79.7% 54.4% 67.1%
CNN+CBA+BRC+FT (ours) 83.3% 53.7% 68.5%

80-20 Split CNN (ours) 83.3% 60.5% 71.9%
& CNN+CBA+BRC (ours) 76.4% 71.0% 73.7%

2-class CNN+CBA+BRC+FT (ours) 80.9% 73.1% 77.0%

TABLE I
Performance comparison of our proposed model with SOTA on different

splits. Our proposed techniques – concatenation-based augmentation
(CBA), blank region clipping (BRC) and device specific fine-tuning (FT) –

led to significant improvements.

Length 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec 9 sec

Scores 56.6 59.0 60.3 61.1 62.3 64.4 66.2 65.1 65.5

TABLE II
Breathing cycle length size versus classification score.

4-class classification task, RespireNet outperforms state-of-
the-art (SOTA) by 3.9% [11] on the official 60-40 split, and
by 2.2% [10] on the 80-20 split (Table I). Further, RespireNet
achieves the new SOTA of 77.0% on the 2-class task.
Implementation Details: We train our model on a Tesla v100
GPU on a Microsoft Azure VM. We used the SGD optimizer
with momentum of 0.9, and a batch size of 64. We used a
fixed learning rate of 1e-3 for stage-1 and 1e-4 for stage-2
of training. Stage-1 was trained for 200 epochs. The highest
validation checkpoint from stage-1 was used to train stage-2
for another 50 epochs for each device.

We further analyze the effect of our novel proposed
techniques by conducting an ablation analysis on the 4-class
classification task on the 80-20 split.
Concatenation-based Augmentation: Due to the small num-
ber of abnormal samples, our CNN model tends to overfit6

on the abnormal classes, and achieved a score of 62.2%.
Standard augmentations (noise addition, etc.) improved the
score to 66.2%, which further improved to 66.8% with
our concatenation-based augmentation. Also, this gain was
mainly due to improved accuracy of the abnormal classes,
where the sensitivity increased by 1.5%. This shows that
our augmentation scheme to generate novel samples for the
abnormal classes help the model generalize better.
Smart Padding: We experimented with different breathing
cycle lengths and found 7s length to perform best (Table II).
A small cycle length led to clipping of samples, thus loosing
valuable information in an already scarce dataset, while
a big cycle length caused repetition leading to degraded
performance. For the base model, smart padding improves

6The generalization gap (test error – train error) was much higher for the
abnormal classes compared to the normal class, despite the low train error
for both classes. On continuing our training for longer, we observed that
the test error for the abnormal classes started increasing.
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Device AKGC417L Meditron Litt3200 LittC2SE

% Samples 63% 21% 9% 7%
Score Impr 1.7% 1.6% 9.3% 8.6%

TABLE III
Device specific fine-tuning: Devices with small number of samples show a

big score improvement.

accuracy over zero-padding and reflection-based padding by
5% and 2% respectively. This demonstrates the effectiveness
of our padding scheme.
Blank Region Clipping: It resulted in an improvement of
0.5% over the base model score of 66.2%. When combined
with our proposed augmentation, it helped achieve a score
of 67.1%, outperforming the current SOTA [10] by 0.8%.
Device specific fine-tuning: Our fine-tuning resulted in an
improvement of 1.4% in the final ICBHI score. It dispropor-
tionally helped the under-represented classes; devices with
fewer samples had ∼9% increase in their scores (Table III).

IV. RELATED WORK

Recently, there has been a lot of interest in using deep
learning models for respiratory sounds classification [10, 11,
9]. It has outperformed statistical methods (HMM-GMM) [7]
and traditional machine learning methods (boosted decision
trees, SVM) [8, 24]. In these DNNs, a time-frequency
representation of the audio signal is provided as input to the
model. Kochetov et al. [9] propose a deep RNN with a noise
masking intermediate step for the 4-class classification task,
obtaining a score of 65.7% on the 80-20 split. However the
paper omits detail about noise label generation [10], thus
making it hard to reproduce. Deep residual networks and
optimized S-transform based features are used by Chen et al.
[17] for three-class anomaly classification in lung sounds.
The model is trained and tested on a smaller subset of the
ICBHI dataset on a 70-30 split and achieve a score of 98%.

Acharya and Basu [10] propose a Mel-spectrogram based
hybrid CNN-RNN model with patient-specific model tuning,
achieving a score of 66.3% on 4-class and 80-20 split. Ma,
Xu, and Li [11] introduce LungRN+NL which incorporates
a non-local block in the ResNet architecture and apply
mixup augmentations to address the data imbalance problem,
achieving sensitivity of 63.7%. However, none of these
approaches focus on the audio characteristics of the ICBHI
dataset, which we exploit to improve performance.

V. CONCLUSION AND FUTURE WORK

The paper proposes RespireNet, a simple CNN-based
model, along with a set of novel techniques—device specific
fine-tuning, concatenation-based augmentation, blank region
clipping, and smart padding—enabling effective utilization
of a small-sized dataset for accurate abnormality detection
in lung sounds. Our proposed method achieved a new SOTA
for the ICBHI dataset, on both the 2-class and 4-class
classification tasks. Further, our proposed techniques are
independent of the choice of network architecture and should
be easy to incorporate within other frameworks.

The current performance limit of the 4-class classification
task can be mainly attributed to the small size of the ICBHI
dataset, and the variation among the recording devices.

Furthermore, there is lack of standardization in the 80-20
split and we found variance in the results based on the
particular split. In future, we would recommend that the
community should focus on capturing a larger dataset, while
taking care of the issues raised in this paper.
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