
  

 
 

Abstract— Transfer entropy (TE) is used to examine the 
connectivity between nodes and the roles of nodes in epileptic 
neural networks during rest, moments before seizure, during 
seizure, and moments after seizure. There is a set of nodes that 
dominate information flow to epileptogenic zone (EZ) nodes, 
regions that trigger seizure, and non-EZ nodes during rest. The 
TE from the dominant to the EZ nodes decreases shortly before 
a seizure event and reaches a minimum during seizure. During 
the seizure, the dominant nodes cease or only weakly interact 
with the EZ nodes. This supports the hypothesis that seizure 
occurs when some nodes stop inhibiting the EZ nodes. The TE 
from the dominant to the EZ nodes peaks immediately after 
seizure, suggesting that seizure may stop when the brain exerts 
the highest level of information flow/activation/communication 
to the EZ nodes. The information flow from the dominant to EZ 
nodes is different from that to non-EZ nodes. This TE dynamics 
entering and exiting seizures may identify more accurately the 
EZ nodes, which may improve surgical planning.  

I. INTRODUCTION 

Over 30% of epilepsy patients have incapacitating seizures 
which cannot be completely controlled with medication [1]. 
For patients with medically refractory epilepsy (MRE), the 
most common treatment option is instead a surgical resection 
of the epileptogenic zone (EZ), which is defined as the 
minimal area of brain tissue responsible for generating the 
recurrent seizure activity [2]. A successful surgical outcome 
can only be achieved by completely resecting or disconnecting 
the EZ and thus relies heavily on precise localization of this 
region. Before the surgery, a hypothesis of the EZ is 
formulated through a comprehensive evaluation comprising 
various modalities such as scalp-electroencephalography 
(scalp-EEG), MRI, PET and SPECT. When non-invasive 
methods are discordant regarding the location of the EZ, 
invasive evaluation using intracranial EEG (iEEG) may be 
needed [2].  

Following invasive electrode placement, patients remain in 
the hospital for days to weeks waiting for a sufficient number 
of seizure events [3], [4]. Clinicians then visually inspect 
hundreds of invasive iEEG signals, studying the onset of 
seizure events, which are marked by the early presence of 
abnormal activity such as bursts of high frequency oscillations 
(100-300Hz). EEG channels where these onset features first 
appear are commonly identified as the EZ. Unfortunately, 
surgical success rates vary between 20-80% [5], [6], which 
stems from the EZ being inaccurately, or incorrectly identified 
and thus not entirely removed.  

A growing body of research studies epilepsy as a network 
disease and network-based measures are increasingly used to 
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characterize the architecture of connectivity patterns in 
epilepsy patients  [7]–[16]. Recent studies suggest that rather 
than being a single source, the EZ is itself a highly coupled 
network responsible for the generation and propagation of the 
seizure activity [17]. Thus, understanding of the underlying 
dynamics and directionality of information flow within the 
epileptic network, not just during a seizure, but also before and 
after, may shed light on the mechanism of seizure, 
understanding of seizure’s semiology, and facilitate a more 
accurate identification of the EZ.   

In this study, we develop a tool that utilizes information 
theory to determine the information flow and causal 
relationships among the nodes in the epileptic network during 
rest, moments before, during, and moments after seizure. We 
compute the transfer entropy (TE) among the nodes in the 
network which allows us to establish a pattern of interactions 
among the clinically annotated EZ and non-EZ nodes in the 
network. A capability is developed to distinguish EZ from 
non-EZ nodes. 

II. METHODS 

A. SEEG Data 
 The data analyzed in this study were stereotactic-EEG 

(SEEG) recordings from two patients. All patients had focal 
MRE and underwent robotic SEEG for extra-operative 
monitoring followed by SEEG-guided laser ablation. The data 
were recorded using the Nihon Kohden 1200A EEG 
diagnostic and monitoring system (Nihon Kohden America, 
Foothill Ranch, CA, USA) at a sampling frequency of 1 kHz. 
One patient (patient A) had a successful surgical outcome, 
defined as seizure free (Engel class I [18]) at 12+ months post-
operation. The other patient (patient B) only had a partially 
successful surgical outcome initially (Engel class II), but the 
patient had a second surgery, which was successful (Engel 
class I).  

B. Data Pre-processing 
The data are bandpass filtered between 0.5 and 300 Hz 

with a fourth order Butterworth filter, and notch filtered at 60 
Hz. A common average reference is applied to remove 
common noise from the signals. Finally, SEEG channels not 
recording from grey matter or otherwise deemed “bad” (e.g., 
broken or excessively noisy) by visual inspection are discarded 
from each patient’s dataset.  

C. Transfer Entropy (TE) 
A common method to establish relationships between two 

variables in time series data is to use time shifted cross-
correlation. However, cross-correlation can only establish 
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linear relationships and cannot establish causalities. A better 
alternative is to use TE [19]. TE(x ® y) gives a measure of 
information transfer from variable x to y, given all the past 
values of y are known. TE has often been used to establish 
causality [20], [21] and can work for linear and nonlinear 
systems [20], [22]. TE has offered insights into the functional 
connectivity of systems in a variety of fields, including 
neurology and space science [23]–[28].  

 

For the present study, we identify seven time intervals of 
interest: (a) rest, (b) 60–10 s before onset of seizure, (c) 10–0 
s before onset, (d) first half of seizure, (e) second half of 
seizure, (f) 0–50 s after the end of seizure, and (g) 50–100 s 
after seizure. Rest is the time when there is no seizure, 
typically hours before a seizure event. We apply TE(x ® y)(t) 
where x and y are the time series electrode signals from two 
different channels in the SEEG data and t is the response lag 
time. Noise in the system is computed from surrogate data, 
sur(x), which is obtained by randomly permutating the order 
of x. The mean noise and s are determined from an ensemble 
of 100 permutations of TE(sur(x) ® y)(t), from which we 
calculate significance S = (TE – mean noise)/s.  In the network 
analogy, each SEEG channel is a node in the neural network. 
Significant TE(x ® y) suggests that node x activates node y (x 
causes y to change), which can include positive (excitation) or 
negative activation (inhibition). The strength of the causal 
connection can be measured by S. In order save computational 
time, we average the data using 10 ms window moving 
average. The results do not change significantly from those 
computed with 1 ms time resolution.  

III. RESULTS 

A. Patient A – Successful outcome after one surgery 
The clinicians inserted electrodes with 60 contacts in the 

brain of patient A corresponding to 60 channels, 3 of which 
have been identified as EZ channels (labeled as L’2, L’3, and 
L’4). We apply TE(x ® y)(t) for the 7 time intervals, where y 

is an EZ channel and x is a non EZ channel. The mean noise, 
s, and S are computed for each TE. Figure 1 a–g show an 
example of the result of applying TE from every channel to the 
EZ channel L’3, which is referred to herein as TE map for L’3.     

Figure 1a shows that during rest, TEs are generally low to 
moderate. The channels with the highest TEs are channels 48–
50 (G’12–14) at most t. These 3 channels consistently 
dominate the information transfer to EZ as well as non-EZ 

channels. At 60–10 s before seizure, TEs for many channels, 
including G’12–14, increase (Figure 1b), but at 10–0 s before 
seizure, the TEs dramatically decrease (Figure 1c). However, 
G’12–14 still dominate information flow to EZ channels 
albeit their TEs are lower.  

In the first half of seizure, TEs for most channels decrease 
even further and reach a minimum (Figure 1d). Interestingly, 
this time, the TEs for G’12–14 are lower than those for most 
channels. In the second half of seizure, while TEs for many 
channels have increased, TEs for G’12–14 still remain among 
the lowest (Figure 1e).   

In the immediate aftermath of seizure, at 0–50 s after the 
seizure, TEs for most channels increase dramatically (Figure 
1f). Their values are off the chart. At 50–100 s after seizure, 
TEs start to decrease, perhaps reverting back to the resting 
state (Figure 1g). G’12–14 return to dominate the information 
flow to the EZ channels.   

We have computed the TE maps for the other two EZ 
channels (L’2 and L’4), and they follow a similar pattern as 
that of L’3. This is summarized in Figure 2a, which plots the 
median TE from the dominant channels to all 3 EZ channels 
(red curve). It shows that TE is moderate during rest, increases 
at 60–10 s before onset, decreases significantly at 10–0 s 
before onset, reaches a minimum near 0 in the first half of 
seizure, increases slightly in the second half of seizure, and 
increases dramatically immediately after seizure (0–50 s after 
seizure), and decreases at 50–100 s after seizure. 

 
Figure 1.  TE maps for an EZ channel for patients A (a–g) and B (h–n).  In each map, the x axis is t, y axis is the channel number, and the color is TE S.   
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To show the dominance of G’12–14, Figure 2a plots the 
median TE of other channels (non G’12–14) to EZ channels 
(blue curve). The figure shows that the blue curve is generally 
lower than the red curve, except during the seizure, which 
may have implications to the seizure dynamics as described 
next.  

 
Figure 2. (a) Median TE from the dominant channels to the EZ channels (red 
curve) and median TE from non-dominant channels to the EZ channels (blue 
curve). The error bars are the first and third quartiles. (b) the same as (a) 
except for randomly selected non-EZ channels. Seizure occurs between the 
two vertical orange lines. The x axis is time: a = rest, b = 60–10 s before 
seizure, c = 10–0 s before seizure, d = first half of seizure, e = second half of 
seizure, f = 0–50 s after seizure, g = 50–100 s after seizure.  
 

Figures 1 and 2a suggest that in terms of connectivity 
between nodes, G’12–14 dominate the information flow to the 
EZ nodes during rest and moments before seizure. Seizure 
occurs when these nodes transfer little information to EZ 
nodes and cease to dominate. Seizure stops when G’12–14 
and other nodes more strongly than ever transfer information 
to the EZ nodes. As the network goes back to the resting state, 
G’12–14 again assert their dominance. This observed pattern 
supports the hypothesis that during rest, the EZ nodes are 
being inhibited by functional neighbors, and that a seizure 
occurs because these neighboring nodes stop inhibiting the 
EZ nodes [29], [30].  

The pattern described above is subtly different for non-EZ 
nodes. To illustrate, we randomly select 4 nodes to represent 
non-EZ nodes and compute TEs from G’12–14 and other 
nodes to these non-EZ nodes. The medians are plotted in 
Figure 2b. The TE for the dominant nodes is still larger than 
that for non-dominant nodes. Comparisons of Figures 2a and 
2b show 2 key differences: (1) the minimum TE is reached 
during seizure for EZ nodes whereas the minimum is reached 
at 10–0 s before seizure for non-EZ nodes; and (2) TE after 
seizure is significantly higher than that before seizure for EZ 
nodes, but this is not the case for non-EZ nodes. The latter 
may signify that the brain makes a concerted effort, more than 
at any other times, to inhibit the EZ nodes to stop the seizure. 
On the other hand, for non-EZ nodes, the TE is fairly similar 
before and after seizure.   

B. Patient B – Successful outcome after two surgeries  
We perform the same calculation for Patient B data. Patient 

B has 76 channels and 12 EZ nodes were identified by 
clinicians.   

Figure 1 h–n shows an example of the TE maps for an EZ 
channel (G’2). The pattern is similar to that seen in Figure 1 
a–g with a few exceptions as discussed next.  

Figure 3a summarizes the dynamical pattern as done in 
Figure 2a. In comparison with patient A, the TE at rest for 
patient B starts at a high level. It is unknown when the resting 
state period was taken relative to seizure for patients A and B. 

Perhaps, the resting state period for patient B was closer to the 
seizure event, which may explain the high level of TE. In any 
case, the TE for 60–10 s before onset is only slightly higher 
than that for rest. As for patient A, TE drops significantly just 
before onset. In the first half of seizure, TE increases. Its 
significance is not clear. It may suggest that the brain attempts 
to inhibit the EZ nodes, but fails. TE reaches the minimum 
only in the second half seizure. Immediately after seizure, TE 
reaches the maximum, as with patient A.   

As done for patient A, we apply TE to 6 randomly selected 
non-EZ nodes. Figure 3b plots the median TE for non-EZ 
channels, which can be compared to Figure 2b. The 
characteristics of the two plots are similar, except that in 
Figure 3b, TE peaks in the first half of seizure and the 
minimum TE is lower. A key similarity is that the TE 
immediately after seizure is the about the same as that before 
seizure.   

 
Figure 3.  The same as Figure 2, except for patient B. The x axis is time and 
described in Figure 2 caption. 
 

As mentioned in Section II.A, although the patient 
improved after the first surgical procedure, the patient needed 
a second procedure to achieve complete success. 16 additional 
nodes were identified as EZ for the second procedure.  

We examine the second set of EZ nodes and find that 
indeed, some of the nodes have the same EZ signature shown 
in Figures 2a and 3a. An example is shown in Figure 4a. 
However, some of the nodes do not, an example of which is 
shown in Figure 4b.  

 
Figure 4. (a) an example of an EZ node (M’7) that has the EZ signature in. 
(b) an example of an EZ node (M’12) that does not have the EZ signature. 
See Figure 2 caption for the the plot description, including the x axis labels. 

IV. DISCUSSION AND CONCLUSION 

We examine the connectivity between nodes and the roles 
of nodes in the epileptic neural networks during rest, moments 
before seizure, during seizure, and moments after seizure.  
There is a set of nodes that dominate the information flow to 
EZ and most other nodes during rest. This may suggest that 
some regions of the brain (dominant nodes) inhibit the EZ 
during rest. The TEs from the dominant nodes to EZ nodes 
look different from those to non-EZ nodes. The TE dynamics 
before, during and after seizures are summarized in Table 1. 
The TE dynamics of the EZ nodes appear to have a consistent 
signature and may facilitate a more accurate identification of 

6123



  

the EZ nodes.  
 

TABLE 1. TE FROM DOMINANT NODES TO EZ AND NON-EZ NODES 
Time  EZ nodes non-EZ nodes 

–60 to –10 s increase, dominate may increase 
–10 to 0 s decrease, dominate reach min 

during seizure reach min, cease to 
dominate 

slightly increase 

0 to 50 s reach max, resume 
dominating 

increase to ~TE 
for –60 s  

50 to 100 s decrease, dominate may decrease 
 
Our analysis suggests that (1) seizure occurs when the 

dominant nodes cease to dominate the information flow or 
weakly transfer information to the EZ nodes, supporting the 
hypothesis that seizure occurs when some nodes stop 
inhibiting the EZ nodes [29], [30]; (2) seizure stops when the 
dominant and other channels strongly increase the activation 
of or information flow/ communication to the EZ nodes, much 
more strongly than at any other times. It may suggest that this 
level of effort is needed to stop the seizure. The effort seen at 
60–10 s before seizure is high, but perhaps not high enough to 
suppress seizure. It may signify that the brain recognizes that 
seizure is looming and attempts to stop it, but the effort 
apparently is not strong enough. For non-EZ nodes, TE 
increases after seizure, but it increases to about the same level 
as before seizure. Thus, if the seizure could be stopped by this 
level of TE to non-EZ nodes, it would have stopped seizure at 
60–10 s before seizure.   

The nodes that are identified as EZ by their TE signature 
(as described in Table 1) match well with the EZ nodes 
identified by clinicians when the surgical procedure is a 
success (as in patient A). However, for patient B, we find that 
there are a few TE EZ nodes that are not in the clinically 
annotated list of EZ nodes for the first procedure, which may 
explain why the first surgery was only partially successful 
(Engel class II). These TE EZ nodes are included in the second 
procedure and the patient achieved Engel class I afterward. 
There are, however, a few clinically annotated EZ nodes in the 
second procedure that do not match the TE EZ signature. This 
suggests that TE may be able to refine the boundary of the EZ 
and improve planning for surgical procedures. 

The present study has only analyzed two patients. We plan 
to analyze more patients in our follow up study. It would be 
interesting also to examine TE from EZ to other nodes. 
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