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A Fusion of Multi-view 2D and 3D Convolution Neural Network based
MRI for Alzheimer’s Disease Diagnosis
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Abstract— Alzheimer’s disease (AD) is a neurodegenerative
disease leading to irreversible and progressive brain damage.
Close monitoring is essential for slowing down the progression
of AD. Magnetic Resonance Imaging (MRI) has been widely
used for AD diagnosis and disease monitoring. Previous studies
usually focused on extracting features from whole image or
specific slices separately, but ignore the characteristics of
each slice from multiple perspectives and the complementarity
between features at different scales. In this study, we proposed
a novel classification method based on the fusion of multi-
view 2D and 3D convolutions for MRI-based AD diagnosis.
Specifically, we first use multiple sub-networks to extract the
local slice-level feature of each slice in different dimensions.
Then a 3D convolution network was used to extract the global
subject-level information of MRI. Finally, local and global
information were fused to acquire more discriminative features.
Experiments conducted on the ADNI-1 and ADNI-2 dataset
demonstrated the superiority of this proposed model over other
state-of-the-art methods for their ability to discriminate AD and
Normal Controls (NC). Our model achieves 90.2% and 85.2%
of accuracy on ADNI-2 and ADNI-1 respectively, thus it can be
effective in AD diagnosis. The source code of our model is freely
available at https://github.com/fengdugianhe/ADMultiView.

I. INTRODUCTION

Alzheimer’s disease (AD) is a kind of neurodegenera-
tive disorder with the impairment of memory and brain
damage. Early diagnosis of AD is important for slowing
down the development of Alzheimer’s disease. Magnetic
resonance imaging (MRI) is a typical biomarker to determine
whether the subject is an AD patient [1]. MRI-based AD
diagnoses have received increasing attention in recent years
as its promising results in quantifying the stage of disease
of AD and normal controls (NC), making it possible for
medical scientists to identify imaging biomarkers of AD from
anatomical MRI [2]. Machine-learning methods, including
traditional voxel-based morphology analysis and recent deep
learning based models, have been proposed to assist MRI-
based AD diagnosis and have achieved promising results.

A large number of voxel-based morphology (VBM) stud-
ies based on traditional statistical methods have explored the
difference in the brain between AD and NC. Studies based
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The slice-level information of slice. The left is the slices at
different positions in axial plan. The right is the slice in different dimensions
including sagittal plane, coronal plane, and axial plan.

Fig. 1.

on VBM calculate the inherent characteristics of certain
biomarkers, such as the hippocampus volumes [3], cortex
sickness [4], subcortical volumes [5]. Most of the VBM
based methods require certain expert knowledge like brain
atlas and a complex procedure for handcrafted feature extrac-
tion, which are time-consuming and difficult to implement.

With the continuous development of deep learning, several
attempts based on deep learning have been employed to
analyze the MRI data by constructing an end to end model
avoiding manually extracting features [6]. 3D convolution
neural network (CNN) could directly perform feature ex-
traction on the whole image at subject-level [9]. Since the
much useless information in the full MRI and few MRIs
are difficult for modeling at the subject level, methods based
on 3D-Patch and 2D-slice have achieved good results [11].
Multiple classifiers are trained at different locations in MRI,
and finally integrated for decision-making [10]. Compared
with the modeling at subject level, the patch and slice
carries more local features, but lose some global information.
On the basis of purely using deep learning methods, some
methods focus on the specific biomarker like hippocampus
[12], amygdala, posterior temporal lobe combining VBM and
deep learning methods [13].

Although deep learning based model have achieved great
classification performance for AD diagnosis, it is still an
undetermined since subjects’ MRIs have relatively small
differences in anatomic abnormalities, and it is necessary
to dig out moderately subtle changes in disease progres-
sion from high denominational of MRI sequences data. As
shown in the Figure 1, there is a certain amount of local
information in each slice of the MRI at different position
and directions. Considering global information in subject-
level and various information in slices-level could be both
valuable, in this work, we integrate the local slice-level
and global subject-level features to complete information
complementation between multiple scales and achieve a
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better prediction accuracy.

The contributions of this study are summarized as follows:

(1) The local feature is extracted from multi-view slices by
using multiple 2D sub-networks and the fusion of slice-level
feature were performed according to the different directions.

(2) A fusion of multi-view slice-level feature and global
subject-level feature extracted by 3D CNN was further used
to obtain more discriminative feature.

(3) For AD vs. NC classification, the accuracy of this
method achieved to 90.2% and 85.2% on ADNI-1 and
ADNI-2 respectively, which supports the efficiency of our
method when help clinical diagnosis of Alzheimer’s disease.

II. METHODOLOGY

Figure 2 shows the overall workflow of proposed model.
This model consists of four modules: the input module, slice-
level sub-network, subject-level 3D CNN, and the classifica-
tion module. More details of each module are available in
the following section.

A. Sub-networks for Slice-level Feature Extraction

The inputs of sub-networks are slices in the three direc-
tions including the sagittal plane, coronal plane, and axial
plane, as the Figure 3 shown. Since there are various kinds
of information on different slices in different directions,
each slice is corresponding to a sub-network. The sagittal
plane, coronal plane, and axial plane section of MRI are
referred to as x, y, and z, respectively. Three transformations
Fy,F,,F, mapping an input I € RP*#>*W {0 feature map in
three dimensions. We take S,= [s}c,s)%,...,sfcv] as the slice
cluster in the x direction. The 2D convolution layers were
used to separately extract the features of each slice in the

corresponding slice cluster.
iy = Fi(si,w3) (1)

where F; is the function of extracting feature which consists
of multiple blocks. Each blocks consists of a 2D convolution
layer, 2D barch normalize (BN) layer, rectified linear unit
(RELU) layer, and 2D Maxpooling layer. w'. is the weight
of convolutional layers crossponding the i the i th slice in
x direction. Finally the 2D avgpooling layer was used to
mapping the feature map into a vector, After the slice-level
feature extracting module, we first cascade the slices at dif-
ferent locations in a same direction. I, = [il,i2,...,i"] denotes
the slice cluster embedding feature in direction x. Then we
cascade the features in three direction. I = [I,,1,,] is the
cascade output of the local embedding in three directions
representing the local information of MRIL.

B. 3D Neural Network for Subject-level Feature Extraction

In order to obtain global characteristics, we extend 2D
convolution to 3D convolution for 3D MRI data. The 3D
convolution operation is defined as

uh(x,y,2) =

ZZZF]{I_I(X+8X7y+5y7Z+5Z)XWklj(8X76y75Z) (2)
5.6, 5.

where (x,y,z) is the coordinates of pixel in 3D image, Fkl_1
is the k feature map of the / layer and Wklj(&(,ﬁy,@) is
a three-dimensional convolution kernel connecting the kth
feature map of the / — 1 layer to the jth feature map of the
[ layer. ulj(x7 y,z) is the output of the convolutional layer,
the new jth feature map of the [ layer. There are four
blocks in the subject-level 3D CNN, and each block consists
of a 3D convolution layer, 3D BN layer, ReLu layer and
3D maxpooling layer. After multiple blocks, a 3D average
pooling layer maps multiple-channel feature maps into a
vector representing the global information.

C. Fully Connected Layer for classification

The local and global features extracted from the two
branches are cascaded in a fully connected layer. The output
of the final layer is the probability that the subject belongs
to a certain category. We use the cross entropy loss L as our
optimization goal which is defined as

l < 1 C C
L=— 2 Y & ¥ 10 = cHog(Pli = clXu: W) ()
c=1 XX

where L is the cross-entropy loss for classification and the
I{-} is an indicator function. When {-} is true, I{-} =1,
otherwise I{ - } = 0. P(y5 = ¢|X,,;: W) denotes the probability
of the subject X, been correctly classifies as the group y5
with weights W.

D. Complexity Analysis

We analysis the complexity of our proposed framework by
considering the two branches, respectively. For the global
subject-level module, the time complexity of each layer is
O(xynglobal), where Kgjopq is the size of 3D convolution
kernel. x,y,z is the size of feature map which vary in
different layers. For the slice-level module, since we combine
feature information in three dimension, the time complexity
is O(N(xyK2,,, +vzK2,., +xzK2, ,)) for each layer, where N
is the number of slice in each direction and K., is the size

of convolution kernel for slice.

E. Dataset and preprocessing

The dataset used in this study was obtained from
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database which is publicly available on the website
http://adni.loni.usc.edu/ [14]. Detailed information about
MR acquisition procedures is available at the ADNI
website. For this study, we extract ADNI-1 and ADNI-2
datasets from ADNI with corresponding T1-weight MR
brain images. Table I shows the demographic details of the
studied subjects. In order to verify the effectiveness of our
model, following study [7][8], we first use the ADNI-1 as
training dataset and evaluate on ADNI-2. In the second
group, the ADNI-2 was used as the training dataset and
ADNI-1 was used as the test set.

To learn valuable information for the training model,
multiple processing operations have been performed on
T1 weighted MRI, first we perform anterior commissure
(AC)-posterior commissure (PC) correction on all MRIs
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Fig. 3. The slice-level sub-network for multi-view slices feature extracting

and removed invalid areas of each sMRI, leaving only the
brain locations. All the images were pre-processed by skull
stripping and intensity normalize. Finally, as the input of the
neural network, all MRIs were resized to the same size. In
the experiment, we uniformly set the size of the model’s
input to 90 x 90 x 90.

TABLE I
DEMOGRAPHIC CHARACTERISTICS OF THE STUDIED SUBJECTS FROM
TWO DIFFERENT DATABASES INCLUDING ADNI-1 AND ADNI-2. (THE
VALUES ARE DENOTED AS MEAN £ STANDARD DEVIATION)

Data | Diagnosis | Number | Age(Years) | Sex(M/F) | MMSE
ADNL1 NC 229 76.245.1 104/95 29.24+1.0
AD 183 75.6+7.6 74/67 23.14£2.5

NC 184 77.3+6.7 76/70 28.8+1.7

ADNI-2 ‘ AD ‘ 143 ‘ 756478 ‘ 67/44 ‘21.%3‘8

F. Experimental setting

The proposed model is implemented on the Pytorch library
and trained on 1 NVIDIA GeForce GTX 1080Ti GPU with
11G memory. To avoid the influence of models with different
parameters, the batch size of all models is set to 12 during
the training process. The optimization method is stochastic
gradient descent with an attenuation factor. We adjusted the

learning rate to make each model converge to an optimal
value. To avoid over-fitting, we added an early stopping
mechanism during the training process. To evaluate the
performance of our proposed model, we calculate the follow-
ing four measures: classification accuracy (ACC), sensitivity
(SEN), specificity (SPE), receiver operating characteristic
sensitivity (ROC) curve, and under ROC curve (AUC).

III. RESULTS AND DISCUSSION
A. Comparison with Different Methods

We first compare the proposed method with four methods
including conventional approaches and deep learning based
methods.

(1) Voxel+SVM [15]: All MRIs are first normalized to
the AAL template using a non linear image registeration
technique. Then the MRI was segmented into three types,
gray matter (GM), white matter (WM) and cerebrospinal
fluid (CSF). The GM tissue density was mapped to a vector
and used the input of support vector machine (SVM) for
classification.

(2) 3D-CNN [16]: In this model, we only use a 3D CNN
to extract global subject-level features of MRI. It is worthy
noting that this model is a part of our proposed model.

(3) Multi-Slice: As another part of our model, this method
only focusing on the slice feature extracting by cascading the
feature of all slices in three direction.

(4) Multi-Patch [16]: In this method, we spilt the MRI into
multiple patches and train a feature extractor for each patch.
Finally, the features were cascade to construct the embedding
feature of the entire MRI.

B. Results on ADNI-2

In this section, we use ADNI-1 as the training dataset
and evaluate on the ADNI-2 dataset. Table III illustrates the
comparison results and Figure 4 (a) shows the ROC curves of
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Fig. 4. Comparisons of ROC curves on AD vs. NC task. (a) is the model was trained on ADNI-1 and evaluated on ADNI-2. (b) is the model was trained

on ADNI-2 and evaluated on ADNI-1.

TABLE II
RESULTS FOR AD vs. CN CLASSIFICATION TASKS WITH MODELS
TRAINED ON ADNI-1 AND EVALUATED ON ADNI-2

Method(%) | ACC | SEN | SPE | AUC

Voxel+SVM 75.9 67.7 81.0 72.9

3D-CNN 86.5 81.8 86.6 92.0

Multi-Slice 84.0 78.3 84.2 89.4

Multi-Patch 83.4 82.5 80.2 92.1

Our Method 90.2 88.1 89.3 94.2
TABLE 1II

RESULTS FOR AD vs. CN CLASSIFICATION TASKS WITH MODELS
TRAINED ON ADNI-2 AND EVALUATED ON ADNI-1

Method(%) | ACC | SEN | SPE | AUC
Voxel+SVM 75.4 72.8 71.6 77.4

3D-CNN 83.0 73.7 85.9 89.0
Multi-Slice 77.6 61.2 70.8 84.5
Multi-Patch 80.8 77.6 78.2 90.5
Our Method 85.2 71.5 82.3 91.0

different models. Results indicate that the proposed method
is able to deliver better performance than other methods.
Specifically, our model effectively improves the classification
effect of the model. Compared with the method using whole
image alone, after adding slice feature from multi-view, AUC
was improved to 94.2%. The results indicating these two
branches could cooperate with each other well. In addition,
our method shows a significantly improvement on SEN
compared to other methods in comparison. This is especially
important, as positive subjects are of special interest in
clinical diagnosis. The results suggest that the local and
global feature through cascading the high-level semantic
features can better obtain positive discriminant information
and perform well in SEN than the method based on just slice
or patch.

C. Results on ADNII

In order to further demonstrate the effectiness of our
proposed method, we also use the ADNI-2 as the training

dataset and evaluate on ADNI-1. We report the comparison
result in Table III and the ROC curves of the different models
was shown in Figure 1 (b). The SEN of our method could
achieve 77.5, although it is slight lower than Multi-Patch,
it surpasses the other methods. Similar to the results on
ADNI-2, our model also yields the best ACC and AUC
when compared with the other methods. The results further
indicate that the fusion of local features of slices in different
directions and global feature of whole image will be more
helpful for characterizing the characteristics of MRI.

It is noted that the performance of model trained with
ADNI-2 is lower than the one trained with ADNI-1. The
major reason is that ADNI-1 and ADNI-2 were acquired by
1.5T and 3.0T scanners, which leads to the different imaging
quality that directly affects prediction accuracy.

D. Effect of Slices in Different Dimensions

To better understand the effectiveness of our model, we
compared the effects of fusing local slice-level feature in
different dimensions. As shown in Table IV, compared with
the sagittal plane and the coronal plane, weighting in the
axial plane performs better on SPE. When all three directions
were considered, the model performs best in terms of ACC,
SEN, and AUC, which shows that the integration of slices
in multiple directions is conducive to the model extracting
more refined features.

TABLE IV
THE EFFECTS OF FUSING LOCAL SLICE-LEVEL FEATURE IN DIFFERENT
DIMENSIONS

Sagittal | Coronal | Axial | ACC | SEN | SPE | AUC

86.5 | 81.8 | 86.7 | 93.8

v 88.1 | 832 | 88.8 | 94.1
v 89.0 | 84.6 | 89.6 | 94.0

Vv | 893 | 853 | 897 | 94.1

v v Vv | 902 | 881 | 894 | 942
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TABLE V
THE PERFORMANCE COMPARISON OF OTHER MODEL REPORT IN THE
LITERATURES AND OUR PROPOSED MODEL

Method(%) \ ACC \ SEN \ SPE \ AUC
SVM-+Landmark [18] 82.2 77.4 86.1 88.1
Multi-Kernel [19] 88.6 85.7 90.4 89.8
Multi-Modal[20] 87.3 88.4 86.2 93.0
CNN +Landmark[21] 88.3 79.6 94.6 94.0
3D DenseNet [22] 88.9 86.6 90.8 92.5
MLP + BGRU [23] 89.7 86.8 92.5 92.1
Our Method 90.2 88.1 89.4 94.2

E. Comparison with Other Methods in Literature

We have compared our classification method with those
reported in the literatures. Methods used in the comparison
include traditional statistical methods and deep learning
methods. The classical statistical methods compared here
includes: SVM based on ROI or landmark [17][18], the
multi-kernel learning combining feature selections, manifold
learning and over-sampling with ROI [19], the multi-modal
data of MRI and positron emission computed tomography
(PET) were used to train a linear regression for the classifi-
cation of subject [20]. The deep learning methods including
Landmark-based deep multi-instance learning method [21],
3D DenseNet used to learn features of 3D patches based
on the hippocampal segmentation results [22], RNN based
longitudinal analysis on the MRI feature extracted by CNN
[23]. As shown in Table V, we can see deep learning
methods have achieve well performance with the statistical
methods based on handcrafted features in terms of AUC.
Meanwhile, our proposed model is able to generate more
discriminative features by combining the local slice-level
feature and global subject-level feature, thus outperforms
other models in comparison in terms of ACC and AUC.

IV. CONCLUSION

In this study, we proposed a novel method based on local
slice-level feature and global 3D image feature for AD vs.
NC classification, to address the problems of anatomical
abnormal feature extraction and high-dimensional features
optimization for MRI based AD diagnosis. Multi-scale in-
formation from local slice-level and subject-level can further
improve the AD vs. NC classification ability of the model.
Experiments conducted on the ADNI-1 and ADNI-2 dataset
have proven the model’s effectiveness in prediction accuracy
. In future work, we will add prior knowledge and explore
more deep learning algorithms for more discriminative fea-
ture extraction.
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