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Abstract—This work aims to demonstrate through computa-
tional analysis that, by monitoring the trajectory of externally
manipulable nanoswimmers (NS), the in vivo biological gra-
dient field (BGF) interacting with the NS can be indirectly
observed. This observability is fundamental to the recently
proposed framework of computational nanobiosensing (CONA)
for “smart” cancer detection. We first present a novel NS
propagation model to emulate the complex and chaotic NS
kinetics inside the capillary network. Next, we propose an
efficient control method that is able to employ the NS as in vivo
sensors for the measurement of a specific BGF such as blood
viscosity. The proposed method, based on the Linear Quadratic
Regulator (LQR), effectively stabilizes the signal-to-noise ratio
(SNR) induced by the Brownian motion of NS at a level above
10 dB to enhance the accuracy of viscosity estimation.

Index Terms—In vivo sensor, Nanoswimmers, Blood viscosity
estimation, Linear Quadratic Regulator.

I. INTRODUCTION

Nanoparticle-mediated drug delivery shows great promise
in cancer diagnosis [1]. However, without any external
guidance, systemic circulation can only bring 0.7% of the
injected nanoparticles to the tumor targets [2]. This low
efficiency is a key hurdle for translating nanomedicines from
the lab into the clinic. From a computational perspective, this
sensing process is simply a “brute-force search”, because
the nanoparticles (computing agents) can only “detect” a
tumor by enumerating all possible pathways in the complex
vascular network [3]. By replacing nanoparticles with exter-
nally manipulable nanoswimmers (NS), we have proposed a
novel computational nanobiosensing (CONA) framework for
“smart” searching of tumors [4]. The presence of a tumor
induces changes in some biological gradient fields (BGFs)
such as pathological vascular structure, blood velocity and
viscosity, pH, enzymatic activity, and homeostatic regulation
[3], which will subsequently alter the externally measurable
properties of NS such as trajectories and aggregation patterns.
Computationally, the BGF could be utilized as the “objective
function”; the targeted tumor site corresponds to the ”global
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optimum”; and the NS are “computing agents”. Thus, NS
could cooperate to find the targeted site under the guidance of
an external steering field programmed according to specific in
vivo function optimization algorithms. However, The CONA
framework is still hypothetical because BGFs were assumed
to be perfectly inferred by measuring the characteristics of
NS. The current work aims at exploring the observability of
BGF, which is a fundamental problem to be investigated in
CONA.

Recent studies have suggested that blood viscosity is a
useful BGF parameter for early diagnosis of tumors and
other diseases [5]. Furthermore, with the continuous develop-
ment of nanotechnology, magnetic nanoparticles have been
extensively used as NS because of their great promise in
both controllability and flexibility. The motion of NS in
the stagnant fluidic environment has already been reported
in some works. The influence on the swimming speed of
bacterial NS in high-viscosity fluids was modelled in [6].
The swimming characteristics of ferromagnetic microsphere
chains in fluidic environments with respect to viscosity were
described in [7]. However, there are rarely NS-based sensing
methods related to the hemodynamic changes, especially in
terms of blood viscosity. Also, Some nanorobotic control
strategies have been verified in the in vivo experiment of
mice. All of them are only focused on controllability but are
short of researching the BGF observability.

In this work, we propose a novel model to emulate the
complex and chaotic kinematics of magnetic-nanoparticles-
assembled NS in human vessels. Through analysing the
average trajectory of several NS released one by one in
the time domain, it is able to solve the inverse problem
about hemodynamics so as to obtain the estimation of the
relative blood viscosity. To further improve the sensing
performance, we present a controller that uses the Linear
Quadratic Regulator (LQR) for reducing the noise in the
viscosity measurement.

The remaining part of this paper is organized as follows: In
section II, the system models and the motion-based viscosity
sensing strategy are presented. Section III introduces the
concept of location-dependent signal-to-noise ratio (SNR)
and propose the LQR control method to improve the sensing
performance. Numerical results are presented in Section IV
to verify the effectiveness of the proposed method. Finally,
some concluding remarks are drawn in section V.
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Fig. 1: Framework of the viscosity sensing by tracking the
NS.

Fig. 2: (a) The NS path inside the capillary network, and (b)
the laminar blood flow velocity (v3 > v2 > v1) along x-axis.

II. SYSTEM MODELS AND SENSING METHOD

This section presents a framework of in vivo sensing
of blood viscosity by tracking NS. The flow chart of this
framework is shown in Fig. 1. In the forward process,
the NS motion is determined by the Brownian noise and
the blood flow velocity correlated to the viscosity. In the
inverse process, the relative blood viscosity is deduced by
monitoring the trajectory of NS with the real-time LQR
controller. Furthermore, we estimate the distribution of the
location-dependent SNR inside vessel for the control method.
The relative displacement of NS is used as feedback for
the controller to reduce the noise induced by the Brownian
motion, so as to improve the sensing performance.

A. Mathematical Modelling of Blood Flow Velocity

Given that the radius of human vessel is far less than the
length of the NS trajectory, we constitute a principal x-axis
along the tortuous trajectory of NS in the capillary network
as shown in Fig. 2(a). The NS released site is the start
point of the x-axis and the y-axis denotes the width of the
blood vessel. The blood flow velocity is obtained by solving
the Navier-Stokes equation, which provides a fundamental
description of laminar flow velocity relating the pressure drop
along the vessel and viscosity:

Vf (y) =
1

η

∆P

L
(R2 − y2), (1)

where Vf (y) is the laminar flow velocity and y is the
transversal distance from the x-axis, R is the radius of the

vessel, ∆P is the pressure drop along the vessel with length
L, and η denotes the blood viscosity. For a Newtonian fluid,
the velocity profile is a parabola with the maximum value
located at the center of the vessel, as shown in Fig. 2(b).

B. Kinematic Model of NS

The NS state vector X(t) is defined as a two-dimensional
value [x, ẋ, y, ẏ]

T , where x and ẋ are the position and
velocity respectively. The following equation illustrates the
state-space relation with the mass m:

ẋ
ẍ
ẏ
ÿ

 = A


x
ẋ
y
ẏ

+ B
[
ux
uy

]
+ Wε(t), (2)

where

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,B =


0 0
1
m 0
0 0
0 1

m

 . (3)

The global force [ux, uy]
T denotes the input, which includes

the total affections of the blood flow and the magnetic
control. The Brownian noise term Wε(t) is a random pertur-
bation produced with magnitude W. The Brownian force is
modelled as a Gaussian random process, thus, it is possible to
estimate the NS motion with free diffusion in discrete time.
The drag force of blood flow Fd is modelled by the Stokes
law: {

γ = 6πηa,

Fd = γVf ,
(4)

where the friction coefficient γ is proportional to the blood
viscosity η as the NS radius a is setting to a constant value.
The combination of the drag force Fd and the Brownian force
FB determines the acceleration and velocity of NS, which is
illustrated by the generalized Langevin equations:

τB =
m

γ
≈ 10−3s, (5)

and 
V ′x(t) +

γ

m
Vx(t) =

γVf
m

+
FB−x(t)

m
,

V ′y(t) +
γ

m
Vy(t) =

FB−y(t)

m
,

(6)

where τB is the Brownian timescale for the relaxation of
the NS, Vx(t) and Vy(t) are the NS velocity components
along the x-axis and y-axis respectively, while FB−x(t) and
FB−y(t) are the Brownian force components respectively. In
general, the Brownian force is a stochastic impact of the NS
performed by the surrounding molecules. The effect of the
fluctuating force is given by the first and second moments:

〈FB(t)〉 = 0, 〈FB(t1), FB(t2)〉 = 2γKBTδ(t1 − t2), (7)

where 〈·〉 is the average value of stochastic variables, KB

is the Boltzmann’s constant and T is the temperature. The
delta function in time indicates that there is no correlation
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between two time instants t1 and t2. In the simulation, we
use a Gaussian random variable following (7) to emulate the
Brownian force acting on the NS.

C. Motion-based Viscosity Sensing

Since the kinematic process of NS in the laminar flow
follows the generalized Langevin equation, the measurement
of blood viscosity can be reduced to a solution of a partial
differential equation by removing the Brownian effects. We
obtain the following formulas to calculate the blood viscosity,
referring to (1), (4) and (6):

η =
3∆P

L πa(R2 − y2) + 2FB−x–2mVx

12πaVx
,

E(η) =
3∆P

L πa(R2 − E(y2))–2mE(V ′x)

12πaE(Vx)
,

(8)

where E(·) is an average operator with respect to the
distribution of the variables. As mentioned above, the mean
Brownian force should be zero. Furthermore, there is no
correlation between Brownian effects in any distinct times.
Thus, the Brownian noise can be filtered by analyzing the
average trajectory of NS.

In this modelling, the NS are released individually. The
blood viscosity is assumed as a time-invariant value, and
the parameters apart from the position and velocity in (8)
are considered as constant values. Thus, it is possible to
obtain the injective relation of different viscosity at different
locations. The initial blood viscosity value at the released site
is setting as a unit amount. The relative viscosity, calculated
by the average trajectory of NS groups at different times, is
the ratio of the location-variant viscosity to the initial value.

III. LQR CONTROLLER FOR SENSING ENHANCEMENT

A. Location-dependent SNR

As mentioned above, the blood viscosity is assumed as
a time-invariant value. We define blood flow effects as the
signal and Brownian motion as the noise, then the location-
dependent SNR is represented as

SNR = 10log10

|γVf (y)Vx|
|FB · Vx|

, (9)

where |γVf (y)Vx| is the power of the blood flow and |FB ·Vx|
is the power of the Brownian motion along the x-axis. As
shown in Fig. 3, the sensing performance declines as the
transversal distance increases. Given that a higher SNR along
the path is related to a better sensing condition, this motivates
us to design the controller stated in the following subsection.

B. Control Method

We propose a real-time LQR-based automatic control
method to ensure that the NS trajectory is as close to the
centre of the vessel as possible. Without Brownian noise, the
controllability matrix is defined as:

Fig. 3: The distribution of the location-dependent SNR in the
vessel.

C =
[
B,AB,A2B,A3B

]
=


0 0 1

m 0 0 0 0 0
1
m 0 0 0 0 0 0 0
0 0 0 1

m 0 0 0 0
0 1

m 0 0 0 0 0 0

 , (10)

The full rank of (10) illustrates that a noiseless system
is controllable, which is presented by the state vectors of a
single NS, [x, vx, y, vy]

T . Given that the Brownian noise is a
time-independent Gaussian White noise, it is hard to design
a complete positional controller. However, the magnitude
order of magnetic force is much larger than that of Brownian
motion. Thus, the impact of the Brownian force is reduced
significantly by implementing a high-frequency external mag-
netic control. Here, LQR is introduced as an optimal con-
troller because of its robustness and cost-effectiveness. Our
target is to estimate the optimal control vector u∗(t), which
steers the NS along the expected trajectory. According to [8],
the performance function is defined as below:

J(t) =
1

2
xT (tf )Sx(tf )+

1

2

∫ tf

t0

xT (t)Qx(t) + uT (t)Ru(t) dt,
(11)

where t0 is the initial time and tf is the end time. And
the positive definite coefficient matrices S, Q and R are
impacts on the different penalty functions as mentioned
below. L1 = 1

2 xT (tf )Sx(tf ) represents the cost function
when the controller terminates, L2 = xT (t)Qx(t) is the
error cost function, and L3 = uT (t)Ru(t) is the boundary
condition of magnetic force.

With parameter-tunning of the above matrixes, the optimal
control vector u∗(t) that minimizes J(t) can be calculated
by solving the Riccati equation [8]:

Ṗ(t) = −P(t)A−AT P(t)−Q + P(t)BR(t)−1BT P(t), (12)

and
u∗(t) = −R(t)−1BT P(t)x∗(t), t ∈ [t0, tf ], (13)
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where P(t) is a n × n positive semi-definite matrix which
contributes in solving process.

TABLE I: THE SIMULATION PARAMETERS

Parameters Value
Blood viscosity (mPa/s) 1.2∼2.8
Vessels diameter (µm) 10

Length of sensing path (cm) 2
x-axis unit length (µm) 1
y-axis unit length (nm) 1
Unit discrete time(ms) 0.5

Frequency of controller(Hz) 200
Number of particles 5

IV. SIMULATION RESULTS

In this section, the referential blood viscosity is setting as
a benchmark, and the relative viscosity calculated by (8) is
compared in two groups. The first group is in the control
of external magnetic force while the second group is not.
We programmed the computational process on Matlab by
choosing some clinical measurement data as the simulation
parameters are listed in Tabel I. As shown in Fig. 4. It is
obvious that the NS trajectory with a controller is close to
the centre of the vessel where the location-dependent SNR
is more than 10dB. While without external control, it is a
high probability that the NS would adhere to the vessel wall
by the accumulated Brownian force. As shown in Fig. 5, the
error of the relative viscosity is defined in dB:

Err(x) = 10log10

∣∣∣∣V is(x)− V is∗(x)

V is∗(x)

∣∣∣∣, (14)

where V is∗(x) is the true blood viscosity equals the initial
viscosity value in simulation and V is(x) is estimated relative
viscosities.

We can see that the error of the sensing strategy is less
than −20dB which means the difference between estimated
relative viscosity and benchmark is less than 1%. Due to NS
adherence to the vessel wall without the external controller,
a sharp and peak value occurs, shown in Fig. 5(a).

V. CONCLUSION

We have proposed a novel sensing strategy to estimate
the in vivo blood viscosity by tracking the manipulable NS;
We have demonstrated through simulating that the proposed
strategy can take measurements of the relative blood viscosity
accurately under the external controller. Future work may
include examining further the impact of non-idealities, such
as the blood turbulence, imprecise tracking, and constrained
steering. Finally, the proposed sensing strategy should be
validated by real experiments to justify further the clinical
relevance of the proposed strategy.

REFERENCES

[1] S. Tran, P. J. DeGiovanni, B. Piel, and P. Rai, “Cancer nanomedicine: a
review of recent success in drug delivery,” Clinical Transl. Med., vol. 6,
no. 1, pp. 1–21, 2017.

(a) Without Controller

(b) With Controller

Fig. 4: The trajectorys of 5 NS: (a) without controller, and (b)
with controller. And the colorbar is the location-dependent
SNR (dB).

Fig. 5: The sensing results: (a) relative viscosity along the
x-axis, and (b) relative error, Err(x).

[2] S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak,
and W. C. Chan, “Analysis of nanoparticle delivery to tumours,” Nature
Rev. Mater., vol. 1, no. 5, pp. 1–12, 2016.

[3] S. Shi, J. Xiong, Y. Zhou, T. Jiang, G. Zhu, X. Yao, U. K. Cheang, and
Y. Chen, “Microrobots based in vivo evolutionary computation in two-
dimensional microchannel network,” IEEE Trans. Nanotechnol., vol. 19,
pp. 71–75, 2019.

[4] S. Shi, N. Sharifi, U. K. Cheang, and Y. Chen, “Perspective: com-
putational nanobiosensing,” IEEE Trans. Nanobiosci., vol. 19, no. 2,
pp. 267–269, 2019.

[5] M. Salve, M. Dhone, P. Rewatkar, S. Balpande, and J. Kalambe, “Design
and sensitivity analysis of micro-cantilever based biosensor for tumor
detection,” Sensor Lett., vol. 17, no. 1, pp. 64–68, 2019.

[6] Y. Magariyama and S. Kudo, “A mathematical explanation of an
increase in bacterial swimming speed with viscosity in linear-polymer
solutions,” Biophysical J., vol. 83, no. 2, pp. 733–739, 2002.

[7] K. Belharet, D. Folio, and A. Ferreira, “Study on rotational and unclog-
ging motions of magnetic chain-like microrobot,” in 2014 IEEE/RSJ
International Conf. Intell. Robots Syst., pp. 834–839, IEEE, 2014.

[8] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems,” in International Conf. Inform.
Control Autom. Robot., pp. 222–229, Citeseer, 2004.

1208


