
  

  
Abstract— The in vivo estimation of α-motoneuron (MN) 

properties in humans is crucial to characterize the effect that 
neurorehabilitation technologies may elicit over the composite 
neuro-musculoskeletal system. Here, we combine biophysical 
neuronal modelling, high-density electromyography and 
convolutive blind-source separation along with numerical 
optimization to estimate geometrical and electrophysiological 
properties of in vivo decoded human MNs. The proposed 
methodology implements multi-objective optimization to 
automatically tune ionic channels conductance and soma size of 
MN models for minimizing the error between several features of 
simulated and in vivo decoded MN spike trains. This approach 
will open new avenues for the closed-loop control of motor 
restorative technologies such as wearable robots and 
neuromodulation devices.  
 

Clinical Relevance— This work proposes a non-invasive 
framework for the in vivo estimation of person-specific α-
motoneuron properties. This will enable predicting neuronal 
adaptations in response to neurorehabilitation therapies in the 
intact human. 
 

I. INTRODUCTION 

Neurorehabilitation technologies (e.g., robotic exoskeletons, 
transcutaneous electrical stimulation) aim at restoring the 
physiological function of the neuro-musculoskeletal system 
following neuromuscular lesions. However, the application of 
these technologies remains highly empirical [1], [2] due to the 
inability to measure the activity of the neural circuitries 
involved in the generation of movement. Moreover, the large 
anatomical variability among individuals makes it difficult to 
predict the neuromechanical response to a given therapy. As 
such, it is currently not possible to tailor rehabilitation 
therapies for person-specific needs. 

In this context, studying the firing behavior of alpha-
motoneurons (MNs), which represent the final common 
pathway of motor command computed by the central nervous 
system, is crucial to characterize the motor effect that 
neurorehabilitation technologies may elicit.  

The output spike train produced by any neuron in response to  
an injected soma current is determined by the morphological 
and electrophysiological properties of such neuron [3]. This 
relationship can be quantified using biophysical models based 
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on Hodgkin-Huxley formalism [4], where model parameters 
are tuned to produce the same firing pattern as experimentally 
measured neurons activity [5].  

The complexity of in silico neuron models can range from 
single compartmental representations [6] to highly realistic 
three-dimensional models with multiple compartments [7]. 
Two-compartment models [8], where one compartment 
represents the soma and another the dendrites, are particularly 
relevant for the study of behavioral dynamics on relatively 
large MNs populations. Computational studies used this 
modelling approach to demonstrate the role of passive and 
active dendrites properties [9], calcium-mediated persistent 
inward currents  [10], the influence that the common synaptic 
input to the MN pool has on force modulation [11] and torque 
[12], as well as the neural response to transcutaneous spinal 
cord stimulation [13]. However, these studies used model 
parameters based on generic data derived mainly from animal 
experimentation [8]. This limits their translation into clinic, 
mainly because none of them accounted for anatomical 
differences among individuals, nor were bounded to track 
experimental MNs discharge patterns. Although several 
optimization approaches have been proposed to match neuron 
models to experimental MN data, [14]–[16], they are 
restrained to in vitro conditions were both MNs output and 
input current are either known or measurable.  

Advanced signal measurement and processing techniques 
[17] make it possible to decode the firing behavior of in vivo 
MNs from non-invasive high-density electromyogram 
recordings (HD-EMG). However, because the input received 
by the MN pool cannot be measured experimentally, the in 
vivo estimation of MN parameters remains an open challenge. 

With the goal of overcoming current model limitations and 
enabling the subject-specific estimation of in vivo human 
MNs properties, we hereby present the first optimization 
framework to automatically tune electrophysiological and 
anatomical parameters of MNs models to match the firing 
behavior of in vivo human MNs decoded from HD-EMG.  
Preliminary results demonstrate the potential of the proposed 
framework to estimate in vivo MNs properties, which opens a 
window for neurorehabilitation technologies to quantify 
potential neural adaptations elicited by a given therapy. 
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II. METHODS 

A. Experimental recordings 
Experiments were performed on a subject seating on a 
customizable chair, with the right leg fixed at a 90 degrees hip 
angle and the foot tightly strapped to a dynamometer for 
measuring ankle plantar-dorsi flexion torque during sustained 
isometric contractions at 20% of the maximum voluntary 
contraction (MVC). Dynamometer data was recorded in 
synchrony with HD-EMG (TMSi Refa multi-channel 
amplifier) from tibialis anterior (TA) muscle at a sampling 
frequency of 2048Hz. HD-EMG recordings from 64 channels 
were decomposed into individual MNs spike trains using 
Convolution Kernel Compensation (CKC) blind source 
separation algorithm [18]. Resulting spike trains consisted of 
one-dimensional binary arrays where 1 represented a spike 
time and 0 no activity. 

B. Common input current estimation 
Measuring the current input at the MN soma during in vivo 
conditions is one of the biggest challenges for fitting neuron 
models. Computational evidence [19] has suggested that the 
neural drive to muscle, which represents the net firing activity 
of the MN pool innervating a muscle, is a linear 
transformation of the low frequency components of the 
common synaptic input received by the MN pool. Inversely, 
this means that a low-pass filtered common synaptic input 
could be approximated from the net firing activity of the MN 
pool. As described by Sartori et al [17], we estimated the 
discharge rate of the in vivo decoded MNs using equation (1), 
where 𝑡𝑡𝑛𝑛 represents the discharge time on the 𝑛𝑛𝑡𝑡ℎ spike in the 
cumulative train. The discharge rate was smoothed by a 
moving average window of 500 samples to obtain an estimate 
of the net firing activity of the in vivo MN pool. 

𝐷𝐷𝐷𝐷𝑛𝑛 = 1
𝑡𝑡𝑛𝑛−𝑡𝑡𝑛𝑛−1

                                 (1) 

Z-score normalization was then applied to obtain a zero mean 
net activity profile. Subsequently, MN pool mean firing 
frequency and standard deviation (SD) were calculated from 
the concatenated spike train of all decoded MNs outputs. 
Adding the product between the net activity profile and SD to 

the MN pool mean firing frequency, we generated a signal 
𝑓𝑓(𝑡𝑡) that captures the net firing activity of the MN pool. 

Taking advantage of the linear current-frequency relationship 
described by literature in MNs firing below 40Hz [3], we 
estimated the common in vivo soma current received by the 
MNs pool (2) using ΔIF as an empirical slope value for the 
linear region of the current-frequency curve [20]. 

𝐼𝐼(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) ∗ ΔIF  �ΔIF = 0.25,   𝑓𝑓(𝑡𝑡) ≤ 25
ΔIF = 0.75,   𝑓𝑓(𝑡𝑡) > 25    (2) 

  

B. Motoneuron model 
The implemented model was based on the two-compartment 
description of Cisi and Kohn [8]. Since this approach consisted 
of injecting the common input current into the soma, dendrite 
compartment was removed, whereas geometric and electro-
physiological parameters of the soma remained the same. Four 
parameters were the exception: maximum conductance of fast 
and slow potassium channels (𝑔𝑔𝐾𝐾𝑓𝑓 and 𝑔𝑔𝑔𝑔𝑠𝑠, respectively), 
peak value at pulse activation (𝛽𝛽𝑄𝑄) and soma diameter. The 
value of these parameters was determined using multi-
objective optimization (section II.D). Parameters choice and 
upper/lower boundaries were based on updated tables from the 
original model [21] to maximize MN-type classification (e.g. 
potassium-related properties vary across MN types, unlike 
sodium [21]) and ensure physiologically realistic values with 
a minimum amount of parameters (e.g. rate constant β 
dominates α during potassium pulse generation [22]). 
 

D. Optimization algorithm 
Since single optimization is affected by unequal contributions 
of different features to the objective function [14], we 
implemented multiple-objective optimization (MOO) using 
global optimum determination by linking and interchanging 
kindred evaluators (GODLIKE) [23]. GODLIKE is a highly 
robust algorithm that simultaneously executes relatively 
simple implementations of genetic algorithm, differential 
evolution, particle swarm and adaptive simulated annealing. 
When any aforementioned method converges, GODLIKE 
randomly interchanges the members of each population and 
proceeds with optimization.  

Figure 1. In vivo MN spike trains are decomposed from HD-EMG recordings and the net MN pool firing frequency is calculated. Common soma current 
is derived from the product of net firing frequency and current-frequency slope (ΔIF). Optimization is then executed for each decoded MN spike train 
taking the same common current as input. Optimization tunes model parameters to reproduce in vivo MN spikes minimizing the error of four features: 
spike time match, mean firing frequency and time to first spike and number of spikes.   
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Four objective functions where defined: spike-match [24]  (3), 
mean firing frequency error (4), first spike error (5) and spikes 
number correction (6): 

1 − 2
1−2𝛿𝛿𝑓𝑓𝑒𝑒

�𝑁𝑁𝑐𝑐 − 2𝛿𝛿𝑓𝑓𝑒𝑒𝑁𝑁𝑒𝑒
𝑁𝑁𝑒𝑒 + 𝑁𝑁𝑚𝑚

�                            (3) 
 

2 �𝑓𝑓𝑒𝑒−𝑓𝑓𝑚𝑚
𝑓𝑓𝑒𝑒

�                                       (4) 
 

 2 �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝑖𝑖)−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚(𝑖𝑖)
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝑖𝑖)

� 
𝑖𝑖=1

            (5) 
 

 �𝑁𝑁𝑒𝑒−𝑁𝑁𝑚𝑚
𝑁𝑁𝑒𝑒

�                 (6) 
 

Where 𝑓𝑓𝑒𝑒 and 𝑓𝑓𝑚𝑚 are mean firing rate [Hz], 𝑁𝑁𝑒𝑒 and 𝑁𝑁𝑚𝑚 number 
of spikes, and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚 the spike times [ms] of 
experimental and modelled MNs, respectively. 𝑁𝑁𝑐𝑐 is number 
of coincident spikes withing a time window of 𝛿𝛿 = 2ms [24].  

GODLIKE algorithm was executed until finding the dominant 
set of parameters that equally minimized all four objective 
functions. Subsequently, similarity between in vivo and in 
silico MN spike trains was quantified using the coincidence 
factor ᴦ [24], where ᴦ = 1 means perfect match and ᴦ < 0.1 is 
considered random chance. Lastly, a sensitivity analysis was 
performed measuring the change in the objective functions 
relative to each parameter. This was done taking the 
optimized sets of parameters for each MN but varying one 
parameter at the time across its entire range.  
 

III. RESULTS 

The spike trains produced by the in silico MNs models after 
MOO were very similar to their corresponding in vivo MNs 
twins (Fig 2). Parameter optimization resulted in ᴦ ≈ 0.2, 
while generic parameters yielded ᴦ < 0.01 (Fig 3). 

Sensitivity analysis (Fig 4) showed that, with exception of 
𝑔𝑔𝑔𝑔𝑓𝑓, all selected parameters have an optimal value where 
objective functions are minimized. Notably, 𝑔𝑔𝑔𝑔𝑠𝑠 and 𝛽𝛽𝑄𝑄 have 
a high impact over firing frequency and spikes number error, 
while diameter alone determines time to first spike error. 
Range and distribution of all MOO identified parameters are 
summarized in Fig 5.  

Figure 4. Parameter sensitivity analysis show that, with the exception of  
𝑔𝑔𝑔𝑔𝑓𝑓, all selected parameters have an optimal value where the objective 
functions are minimized for each MN. Parameters shown are from MN7. 

Figure 5. Histogram of MN parameters identified by MOO framework. 
Figure 2. Blue: in vivo MNs spike trains decoded from HD-EMG 
Orange: spike trains produced by in silico MNs after MMO. 

Figure 3. coincidence factor for generic and optimized MN parameters 
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IV. DISCUSSION 

The high influence of the soma diameter over the first spike 
time feature goes in line with Henneman’s size principle [25], 
which dictates that MNs are recruited by their order of size. 
MOO identified parameters (Fig 4) seem to suggest a 
relatively uniform distribution of MN sizes. However, this is 
a limitation in our data: in vivo MN spike trains were taken 
when the subject was already at 20% MVC. Thus, the first 
spike used as reference for optimization was not 
representative of MNs recruitment. Future work should 
include data from the rising time of the force, where the real 
first recruitment spike could be estimated. Moreover, because 
only data from 20% MVC was considered, it is likely that only 
small size (i.e., slow) MNs were included in this study. 
Experimental data including ramps from zero to higher 
%MVC steady values could allow the identification of larger 
MNs (i.e., fatigue resistant and fast fatigable), potentially 
enabling in vivo MN classification.  

The electrophysiological properties of slow potassium 
channels (𝑔𝑔𝑔𝑔𝑠𝑠 and 𝛽𝛽𝑄𝑄) are highly sensitive parameters 
determining firing frequency and number of spikes features. 
Since both features are closely related, future work should 
only consider firing frequency, as it accounts for larger 
changes in the cost function than the spike number feature. 

Besides some fluctuations in the spike-match function, fast 
potassium channels (𝑔𝑔𝑔𝑔𝑠𝑠) did not show any sensitivity 
towards any feature. This suggests that electrophysiological 
properties of slow potassium channels, together with soma 
size, may be enough parameters for reliable MN optimization. 
However, future work should explore different objective 
functions (e.g. cross-correlation, van Rossum metric) to 
maximize spike match and validate parameter selection.   It is 
worth mentioning that the empirical slope values (section 
II.B) for estimating the common input current may require 
further validation. Future work could focus on optimizing 
these parameters from the frequency-current curve. 
 

V. CONCLUSION 
Despite data limitations, preliminary results demonstrate the 
potential of the proposed optimization framework for 
estimating in vivo MNs properties derived from HD-EMG. 
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