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Abstract— Comprehension of speech in noise is a challenge
for hearing-impaired (HI) individuals. Electroencephalography
(EEG) provides a tool to investigate the effect of different levels
of signal-to-noise ratio (SNR) of the speech. Most studies with
EEG have focused on spectral power in well-defined frequency
bands such as alpha band. In this study, we investigate how
local functional connectivity, i.e. functional connectivity within
a localized region of the brain, is affected by two levels of SNR.
Twenty-two HI participants performed a continuous speech in
noise task at two different SNRs (+3 dB and +8 dB). The
local connectivity within eight regions of interest was computed
by using a multivariate phase synchrony measure on EEG
data. The results showed that phase synchrony increased in
the parietal and frontal area as a response to increasing SNR.
We contend that local connectivity measures can be used to
discriminate between speech-evoked EEG responses at different
SNRs.

Index Terms— Hearing impairment, speech in noise, multi-
variate phase synchrony, local connectivity, EEG

I. INTRODUCTION

Background noise and competing talkers lead to increased
listening effort for both normal-hearing (NH) and hearing-
impaired (HI) individuals [1]. Previous studies have shown
that the presence of background noise can negatively affect a
subject’s ability to perform a task. Houben et. al. [2] reported
that the response time decreased significantly by increasing
signal-to-noise ratio (SNR) of an audio signal. In addition,
Sarampalis et. al. [3] reported that noise reduction (NR)
algorithms in hearing aids (HAs) may reduce listening effort
and free up cognitive resources for other tasks. Furthermore,
NR algorithms in HAs can improve the performance of
listeners during a selective attention task by enhancing the
neural representation of speech and reducing the neural
representation of background noise [4]. In this paper, we
are interested in the change of the listening effort induced
by the change SNR value.

A wide variety of methods have been used to assess
the performances of subjects during different listening tasks
(e.g., see [5]). This include behavioral [2], [3] and physio-
logical measures such as pupillometry [6] and neuroimaging
[7]. Neuroimaging measures tend to reflect changes in neural
activity during the listening task [7]. Electroencephalography
(EEG) has been widely used to measure the neural activity
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in response to audio stimuli due to its non-invasiveness and
high temporal resolution [4], [6], [7].

Various advanced signal processing and information the-
ory techniques have been applied to EEG signals in order
to determine the effect of the different SNR values. For
example, functional connectivity [8], time-frequency analysis
[6], and neural speech tracking [4]. Functional connectivity
describes statistical dependencies between neural data and
can provide insights about how the brain functions. Trans-
fer entropy [9] and phase synchrony [10], [11] have been
proposed in the literature to assess functional connectivity.

Multivariate phase synchrony (MPS) is a standard ap-
proach to characterize the interaction within multichannel
data and it has been used to assess functional connectivity
in multichannel EEG data [10], [11]. Recently, a new MPS
measure called circular omega complexity (COC) was pro-
posed, which led to better performance than conventional
MPS techniques in some specific cases [11].

Functional connectivity within a small region (for example
a cortex) of the brain is called local connectivity. It has
been shown that the local connectivity in the frontal cortex
changes as the cognitive work load changes [12]. Similarly,
The change of the local connectivity was used to classify
left and right hand movement motor imagery in [10]. In the
present study, we will use COC to assess local connectivity
within 8 different regions of interest (ROIs).

Most studies (exceptions include [4], [6], [13]) investigate
the effect of SNR when the stimuli is single words or short
sentences. However, HI individuals in real-life encounter
continuous speech and long sentences.

In this paper, we investigate changes in the local con-
nectivity within EEG signals recorded on HI individuals in
response to continuous speech at two different SNRs. Our
results show that the phase synchrony reflects significant
changes in the parietal and frontal areas as a response to
changing SNRs.

II. MATERIALS AND METHODS

In this section we briefly describe the EEG data used in
this study. This is followed by the review of the multivariate
phase synchrony measure called COC. Finally, steps needed
to calculate the local connectivity in the EEG signal to assess
the effect of SNR will be explained.

A. EEG data
EEG data used in this study is explained in detail in [4],

which focused on neural tracking of the speech signals. In
the sequel we briefly describe the data and refer to [4] for
further details
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(a) Trial design (b) Experimental setup

Fig. 1: Schematic demonstration of the a) trial design and b)
experimental setup.

1) Participants: Twenty-two native HI Danish speakers
(11 males, audiometric threshold = 45 dB HL) aged between
40 and 80 (mean = 67, SD = 11.2) years were recruited from
the Eriksholm Research Centre database. The experimental
procedures were approved by the ethics committee for the
capital region of Denmark [4].

2) Experiment Design: All target streams consisted of
Danish news clips of neutral content read by the same
male and female talker and were presented from two dif-
ferent loudspeakers in the front of the participant ( ±22◦

azimuth). The background noise was delivered from the four
loudspeakers in the back (±90◦ and ±150◦ azimuth), each
playing a different four-talker babble, leading to an overall
effect of 16-talker surrounding babble (see Fig 1b). Partici-
pants were asked to attend to one of the two target talkers
(target) while ignoring the contralateral talker (masker) and
the background noise.

The SNR was defined as the ratio between signal power
of the attended talker and the total signal power of the
background noise [4]. The sound pressure level (SPL) of
the target talker and background noise was set in a way to
generate two different SNR values, +3 dB and +8 dB.

In total 20 trials for each SNR (+3 dB and +8 dB) were
used for the analysis per subject. Each trial comprised a short
period of silence, 5 s of background noise followed by 33 s
of simultaneous target, masker and babble stimuli from all
speakers (see Fig 1a).

3) EEG data acquisition and preprocessing: The BioSemi
ActiveTwo amplifier system (Biosemi, Amsterdam, Nether-
lands) were utilized to record the EEG data . The interna-
tional 10–20 system was used to apply the location of 64
scalp electrodes. The EEG signals were sampled at 1,024
Hz.

The preprocessed EEG data used in this study is the same
as data used in [4], where all preprocessing procedures are
described in detail

Due to technical issues, only data from 19 subjects are
included in this study.

B. Circular Omega Complexity

In this study, we use the COC phase synchrony measure
[11] to assess the local connectivity. The COC measure
determines the level of MPS within signals by quantifying
the dimensionality of the state-space which is formed based

on the instantaneous phase (IP) of the signals [11]. The first
step to calculate the COC is to estimate the IP of the signal
by using the Hilbert transform [11]. The IP of a mono-
component real valued discrete signal X[n] is estimated as:

φX = tan−1

(
X̂[n]

X[n]

)
(1)

where X̂[n] is the Hilbert transform of X[n]. Consider-
ing a K-dimensional signal X[n] and its corresponding K-
dimensional IP signal φX, the circular correlation matrix CX

is defined as [11]:

CX = [CA,B ]K∗K , (2)

where CA,B is the circular correlation between N time points
signal φA and φB which is given by [11]:

CA,B =

∑N−1
n=0 sin

(
φA[n] − φ̄A

)
sin
(
φB [n] − φ̄B

)√∑N−1
n=0 sin2

(
φA[n] − φ̄A

) (
φB [n] − φ̄B

) , (3)

where φ̄A is the circular mean of φA given by:

φ̄A = arg

(
N−1∑
n=0

expiφA[n]

)
. (4)

The COC is then defined as [11]:

COC = 1 +

∑K−1
m=0 λ̄m log λ̄m

logK
, (5)

where λ̄m = λm∑K−1
i=0 λi

and λm;m = 0, . . . ,K − 1 are the

eigenvalues of CX. The COC value varies between 0 and 1
where higher values show that more channels are pair-wise
phase correlated, which means that only fewer eigenvalues
of the CX are significant [11].

C. Local Connectivity Assessment in EEG

The effect of SNR in continuous speech on local connec-
tivity will be investigated in this study. Accordingly, the COC
of 8 different ROIs will be calculated and compared during
two SNR values. The ROIs include left frontal, frontal, right
frontal, left temporal, central, right temporal, parietal and
occipital. Table I shows EEG electrodes corresponding to
ROIs.

The EEG channels were common average re-referenced to
minimize the effect of volume conduction. Additionally, due
to the multi-component nature of EEG signals, the analysis

TABLE I: Mapping EEG electrodes to ROIs

ROI Electrodes ROI Electrodes
Left Frontal AF7, AF3, F3 Frontal Fp1, Fp2, AF4

F5, F7, Fp1 AF3, F1, F2
Right Frontal AF4, AF8, F8 Central FC1, FC2, C1

F6, F4, Fp2 CP1, C2, CP2
Left Temporal FT7, T7, TP7 Parietal CP1, CP2, P1

CP5, FC5, C5 P2, PO4, PO3
Right Temporal FT8, T8, TP8 Occipital O1, O2, PO3

CP6, FC6, C6 PO4
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was performed on conventional EEG bands; Delta (0.5-4 Hz),
Theta (4-8 Hz), Alpha (8-12.5 Hz) and Beta (12.5-25 Hz).
Window-based FIR band-pass filters were utilized to filter
the EEG channels. Following the analysis done in [11], [14],
we also calculate the mean of all band-specific MPS values,
which will be referred to average-band MPS value. It can
describe the MPS within a ROI over all bands with a single
index.

The analysis was performed at the time interval of 32
second duration from 1 to 33 second relative to the onset
of the target speaker. The 32 second time interval was
divided into 16 non-overlapping 2 second windows and the
COC value was extracted for each time window. The local
connectivity for each trial and band was then computed by
averaging all 16 time windows COC values. In summary, the
following steps were performed to assess local connectivity:

• Filter the data to four different bands.
• Estimate the IP of each channel at each band using Eq.

(1).
• Extract the COC value at 16 time windows for each

band using Eq. (5).
• Compute the local connectivity by averaging all 16 time

window COC values for each band.
The aforementioned four steps were repeated for 19 sub-

jects and 40 trials, 20 trials for each SNR value.
Two sample t-test was applied on the obtained values (380

values for each SNR value) to check the significant different
local connectivity. The null hypothesis is that the mean value
of the local connectivity at two SNR values are equal. Since
a series (8 ROIs and 5 bands leading to 40 tests) of t-tests
were performed, we applied the Bonferroni correction to
compensate the multiple comparisons effect. The significance
level was therefore chosen as α = 0.05

40 = 0.0013.

III. RESULTS

Table II summarizes the p-values obtained from a two
sample t-test applied on the results from all trials. The p-
values that are less than the significance level are shown
in boldface. As shown in Table II, the parietal ROI shows
a significant difference over all the bands, except the theta
band. The local connectivity in the left and the right frontal
ROIs in the delta band are also statistically different for the
two SNR levels.

The mean values over all trials of the statistically different
local connectivities are shown in Fig. 2. As illustrated in
Fig. 2, all significant local connectivities increase as the
SNR level increases. The increase in local connectivity is
consistent over subjects; i.e. the mean over all trials for each
subject tend to increase when the SNR level increases. As
an example, Fig. 3 shows the parietal (averaged over all
frequency bands) results averaged over trials for each subject.
The blue lines show the increase in local connectivity by
increasing the SNR level for each subject while the red line
shows otherwise. As shown in Fig. 3, the parietal average-
band connectivity attains generally a higher value at 8 dB,
except for three subjects (red line).
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Fig. 2: The mean values of statistically different local con-
nectivity at two different SNR values, 3dB and 8dB.

IV. DISCUSSION

In this study, we investigated whether a change of SNR
level would result in a significant change of the local
connectivity in the EEG signal. The target group was hearing
impaired subjects and the stimuli was continuous speech in
noise. The local connectivity at five frequency bands and 8
ROIs were estimated at two SNR levels of the speech stimuli.
The two sample t-test was used to check if the changes were
statistically different.

Table II and Fig. 2 show that local connectivity values in
parietal, left frontal and right frontal ROIs were significantly
higher at +8 dB in comparison to that at +3 dB (harder
condition). The increase of connectivity observed in the alpha
band in the parietal region when decreasing the difficulty
of the task is in line with the results of [6]. In [6], the
influence on the EEG power distribution of the SNR level
was investigated, and it was concluded that the power in
the alpha band in the parietal region was inversely related
to the background noise level. It was argued that the reason
might be that sustained attention is required over long speech
presentation [6] and optimal sustained attention performance
is linked to greater alpha oscillation [15]. [16].

The decrease in the local connectivity in the frontal ROIs
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Fig. 3: The mean over all trials for each subject in the parietal
average-band. Blue lines show the increase and red lines a
decrease of local connectivity by increasing SNR level.
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TABLE II: The p-value of the two sample t-test. The bold face numbers shows the rejection of the null hypothesis. The
significance level was α = 0.05

40 = 0.0013.

Left Frontal Frontal Right Frontal Central Left Temporal Parietal Right Temporal Occipital
Delta 3.31e-6 0.34 7.66e-7 0.13 0.002 2.01e-5 0.07 0.65
Theta 0.36 0.16 0.12 0.57 0.06 0.007 0.73 0.52
Alpha 0.37 0.68 0.11 0.02 0.04 7.88e-4 0.09 0.03
Beta 0.40 0.02 0.65 0.28 0.35 2.36e-5 0.55 0.37

Average-Band 0.23 0.20 0.06 0.09 0.02 4.68e-5 0.31 0.23

within the delta band, when the listening situation is more
difficult, might be due to the increase in working memory
load induced by the SNR level. The decrease in frontal local
connectivity within the delta band is consistent with the
results reported in [17] in which they also found lower energy
near the frontal lobe, when the difficulty of the working
memory task increases.

V. FUTURE WORK

The feasibility to discriminate two SNR levels based on
local connectivity measures provides future perspectives for
hearing care rehabilitation. First, the methodology may be
used to gain further understanding of brain processes in
realistic listening scenarious for hearing impaired individuals
using HAs. Such new understanding may be used to support
the development of new signal processing algorithms in HAs.
Secondly, further research may be focused on classification
of single-sweep EEG segments to assess the possibility to
use local connectivity to control future HAs.
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