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Abstract—classification of seizure types plays a crucial role 

in diagnosis and prognosis of epileptic patients which has not 

been addressed properly, while most of the works are 

surrounded by seizure detection only. However, in recent times, 

few works have been attempted on the classification of seizure 

types using deep learning (DL). In this work, a novel approach 

based on DL has been proposed to classify four types of seizures 

— complex partial seizure, generalized non-specific seizure, 

simple partial seizure, tonic-clonic seizure, and seizure-free. 

Certainly, one of the most efficient classes of DL, convolution 

neural network (CNN) has achieved exemplary success in the 

field of image recognition. Therefore, CNN has been employed 

to perform both automatic feature extraction and classification 

tasks after generating 2D images from 1D electroencephalogram 

(EEG) signal by employing an efficient technique, called 

gramian angular summation field. Next, these images fed into 

CNN to perform binary and multiclass classification tasks. For 

experimental evaluation, the Temple University Hospital (TUH, 

v1.5.2) EEG dataset has been taken into consideration. The 

proposed method has achieved classification accuracy for binary 

and multiclass — 3, 4, and 5 up to 96.01%, 89.91%, 84.19%, and 

84.20% respectively. The results display the potentiality of the 

proposed method in seizure type classification. 

Clinical relevance—gramian angular summation field, 

seizure types, convolution neural network.  

I. INTRODUCTION 

In recent times, most of the works focused on the epileptic 

seizures classification using EEG recordings [1–4]. In 

contrast, types of different seizures have not been analyzed 

extensively, which is very important to epileptic seizures 

diagnosis and prognosis [5]. Indeed, in the accurate 

classification of seizure types, discriminative features among 

different seizure types need to be well-defined, which is very 

challenging [6]. Aside from that, only a few studies have 

focused on the classification of seizure types [5–7]. However, 

it is very challenging to classify seizure types using EEG 

signals by traditional methods [7]. Therefore, an automatic 

and accurate classification of seizure types is very important 

and advances the diagnosis practice and epileptic patient’s 

conditions. 

Certainly, advancements in DL algorithms have been 

efficiently improved the automatic classification 

performances in the field of biomedical signal processing and 

image recognition [1]. Indeed, DL algorithms bypass the 

hand-crafted features engineering, which improves 

computational efficiency [3–4]. The automatic feature 

extraction capabilities of CNN make it efficient and extremely 

useful in the field of image classification [4]. The seizure type 

classification using traditional machine learning, in [2], four 

classes of seizure types have been discriminated by support 

vector machine classifier based on statistical features 

extracted from decomposed components of EEG by empirical 

mode decomposition with an accuracy of 95%. In [5], 8 types 

of seizures have been discriminated by constructing 2D 

images from 1D EEG by spectrogram. Actually, the images 

of multiple channels have been vertically concatenated before 

feeding into different DL models. The classification accuracy 

achieved up to 82.14%, 76.81%, 79.71%, and 84.04% by 

CNN, VGG19, VGG16, and AlexNet models respectively. In 

[6], the weighted F1–score 90.1%, 80.7%, 86.6%, and 72.2% 

have been achieved by classifiers k-nearest neighbor (k–NN), 

stochastic gradient descent, XGBoost, and CNN respectively 

to classify 8 classes of seizure type. In [7], 8 classes of seizure 

types have been discriminated by a neural memory network 

with a weighted F1-score of 94.5%. However, very limited 

attempts have been made in the classification of seizure types 

[5–7].  

In this direction, CNN architecture, an efficient class of 

DL, evidenced significant performance in 2D image-based 

classification including epileptic seizures detection [1–2]. 

However, the performance of CNN greatly depends on the 

large number of diverse input datasets [3]. Hence, successful 

implementation of CNN can be performed by constructing 

several 2D images from 1D EEG [4–5]. Therefore, in this 

study, 2D images have been encoded from 1D EEG signal by 

gramian angular summation field (GASF) transformation [8]. 

Besides, it analyzes the EEG signal in the polar coordinate 

system, while preserving the temporal dependency [9]. The 

generated images can be directly fed into the CNN pipeline 

for feature extraction and classification. Therefore, in this 

work, the proposed idea employed an efficient 2D image 

generation technique, gramian angular field transformation 

and CNN pipeline to classify seizure-free and four classes of 

seizure type using EEG signals. 

This paper has been structured as follows: Section II 

consists of an introduction, followed by an experimental setup 

in Section III. Next, Section IV discussed the analysis of 

experimental results. Finally, paper concluded in Section V. 

II. PROPOSED METHOD 

The outline of the proposed idea has been displayed in Fig. 

1. First, 2D images from each EEG segment of seizure types 

have been generated by GASF transformation. Then, images 
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have been directly fed into the CNN pipeline. Further, binary 

and multi-class classification have been evaluated to analyze 

the seizure types. The details of the proposed method 

described below: 

A. Processing  

The EEG signals of the dataset have been free from noise 

and different artefacts. Further, the whole signals have been 

segmented with pre-defined length to get meaningful 

information as well as minimize the computational practice 

[1]. In addition, it provides a large number of diverse samples 

which is required for successful deep learning applications 

[3–4]. Therefore, based on a certain duration, the EEG signals 

have been segmented with 50% overlapping. Now, each 

segment has been encoded into a 2D image by GASF 

transformation. 

B. Gramian Angular Summation Field 

The 1D time series can be transformed into a 2D image by 

the application of an efficient and widely used imagining 

algorithm — gramian angular field (GAF) transformation [8–

10]. The GAF provides an efficient way to analyze 1D time 

series in the polar coordinate system [9]. Besides, the 

encoding process in the polar coordinate system is bijective 

and preserved the temporal dependency [10–11]. For GAF 

transformation, suppose s(t) (1) is a time series having m 

number of samples; 
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Next, s(t) has been scaled to a range of [-1, 1] by (2), as 

normalization can improve the performance of algorithms and 

minimize the bias issue in dataset [3], [10].  
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Now, scaled samples are transformed to the polar coordinate 

system by (3); 
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where, θi and ri are the inverse value of cosine function and 

radius of ti in the polar coordinate system respectively. 

However, the cosine angle varies in the range of [0, π] as 

samples of s(t) have been scaled in the range of [-1, 1]. 

Subsequently, time correlation among sample points is 

measured by the trigonometric functions and construct a gram 

matrix which is computed by (4). In this way, GASF can 

transform 1D time series to the 2D image through scaling of 

data, transformation of coordinate, and functions of 

trigonometric. 
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C. Convolution Neural Network  

The self-learning capability of CNN achieved great 

success and paving new ways in the field of biomedical signal 

and image processing [1]. Indeed, CNN resourcefully 

analyzes input data and extracts meaningful features to 

classify the specific input [2]. The proposed CNN architecture 

and its layers — convolutions, batch normalization, max-

 

Fig. 1. The outline of proposed work to classify seizure-free and four class of seizure types based on 2D images constructed from EEG. 
 

 

Fig. 2. The proposed CNN architecture for classification of seizure types. 
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pooling (M_P), fully–connected (FC), dropout, and an output 

layer with empirically tuned have been illustrated in Fig. 2. 

The CNN autonomously extracts multiple features from the 

input by performing convolution operations by kernel 

functions [3]. Next, the outcome of convolution has been fed 

into the ReLU function, which makes the neural network 

sparse, reduces the computational burden, and improves 

efficacy [4]. Further, batch normalization has been used with 

convolution and fully connected layers to minimize the 

internal covariance shift issue as well as speed up the model 

training practice [1]. Besides, it also efficiently advances 

model convergence speed, stability, and performance. The 

M_P layer learns smooth and sharp features as well as 

aggregates the features map that improves the efficacy and 

robustness of the model [3]. After that, features have been 

flattened and fed into the FC layer to compile the feature 

vectors of the preceding layer. In addition, dropout layer has 

been used to reduce the over-fitting issue and improves the 

model performances [4]. Finally, the output layer having a 

softmax function produces the probability of specific input 

classes. Now, 2D images have been directly fed into the CNN 

to classify seizure-free and four types of seizures. 

III. EXPERIEMNTAL METHODOLOGY 

A. Data  

For evaluation of the proposed idea, a well-known EEG 

dataset of Temple University Hospital (TUH, v1.5.2) has been 

taken into consideration [12]. The different recording 

processes (unipolar and bipolar montages techniques) and 

sampling rates have been adopted to capture EEG signals. In 

this work, EEG recorded with average reference (AR) 

unipolar montages of 19 common channels — C3, C4, Cz, F3, 

F4, F7, F8, FP1, FP2, Fz, O1, O2, P3, P4, Pz, T3, T4, T5, and 

T6 with a sampling rate of 250Hz have been taken into 

account. EEG recording of four seizure types along with 

seizure-free has been utilized for validation. The description 

of EEG dataset has been summarized in Table I, in which first 

and second column represents seizure types and the duration 

of EEG recording (s) respectively. In total, EEG recordings of 

18 patients have been considered. 

B. Experiment 

The EEG recording of each channel has been segmented 

in the length of 10s with 50% overlapping. Further, 2D images 

have been constructed from each EEG segment. In Fig. 3 (a) 

and (b), GASF images constructed from an EEG segment of 

channel C3 of CPSZ and GNSZ have been shown 

respectively. Certainly, the difference between the images can 

be observed. However, from Table I, it can be noticed that the 

duration of TCSZ recording is very small compare to other 

seizure types, hence a random oversampling technique has 

been applied to generate the balance training samples. As 

CNN architecture required a fixed size of the inputs, therefore 

all the images have been resized into 32x32 before using as 

input. 

The data-driven CNN pipeline has been employed to learn 

and extract potential features and classify the seizure types. 

The model has been trained by Adam (β1= 0.9, β2 =0.99, 

decay rate =10-6) optimizer and categorical cross-entropy as 

loss function. The learning rate, number of epochs, and size 

of batch have been tuned to 0.0001, 50, and 16 for all 

classification tasks. Now, for evaluation of CNN pipeline, the 

dataset has been split in the ratio of 80:20 for training and 

testing samples. Besides, 20% of training samples have been 

used for validation. Finally, binary and multi-class 

classification tasks have been evaluated by the CNN pipeline. 

IV. RESULTS AND DISCUSSION  

The 2D images generated by GASF transformation from 

1D EEG segments have been used to train the CNN model. In 

this work, a total of 26 classification tasks (binary (10), and 

multi-class (16)) have been executed. Further, the 

classification accuracy (Acc) and weighted F1–score (F1) have 

been evaluated by (5) and (6) respectively to validate the 

proposed idea.  
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where, tp, tn, fp, and fn represents true positive, true negative, 

false positive, and false negative respectively, while P and R 

denote precision and recall respectively.  

The normalized confusion matrix recorded in 

classification of CPSZ, GNSZ, SPSZ, TCSZ, and SZF has 

been shown in Fig. 4. The performance metrics (PM) of 

binary classification tasks have been summarized in Table II, 

in which the first and second column represents seizure types, 

followed by Acc and F1 respectively. It has been noticed that 

maximum Acc and F1 have been achieved in the classification 

of SPSZ and SZF to 96.01% and 96.0% respectively. The 

performance metrics for the classification of three classes of 

seizure types have been listed in Table III. The maximum Acc 

TABLE I 

DATASET DESCRIPTION 

Seizure types Duration (s) 

Complex partial seizure (CPSZ) 1448.48 

Generalized non-specific seizure (GNSZ) 1606.16 

Simple partial seizure (SPSZ) 1328.50 

Tonic clonic seizure (TCSZ)* 517.17 

Seizure-free (SZF) 1386.11 

 

 

Fig. 3. The images constructed by GASF transformation from an EEG 

segment of channel C3 of (a) CPSZ and (b) GNSZ respectively. 
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and F1 have been recorded up to 89.91% and 90.0% 

respectively for the classification of CPSZ, SPSZ, and TCSZ. 

In Table IV, performance metrics have been listed for the 

classification of four (top) and five classes of seizure types 

respectively. The maximum Acc and F1 have been recorded 

84.19% and 84.0% respectively to classify GNSZ, SPSZ, 

SZF, and TCSZ. In addition, the classification Acc and F1 

achieved up to 84.20% and 84.0% in the case of CPSZ, 

GNSZ, SPSZ, TCSZ, and SZF. A comparative study with 

recent works has been summarized in Table V. As displayed, 

the proposed method is very much efficient for the 

classification of seizure types. 

V. CONCLUSIONS  

In this work, GASF transformation and CNN have been 

employed to classify four classes of seizure type — CPSZ, 

GNSZ, SPSZ, TCSZ, and SZF using EEG. The binary and 

multiclass classification tasks have been performed, and 

maximum accuracy achieved up to 96.01% for binary 

classification, while accuracy recorded up to 89.91%, 

84.19%, and 84.20% for 3, 4, and 5 classes of seizure types 

respectively. The proposed idea can efficiently discriminate 

seizure types and seizure-free using EEG signals with 

favourable experimental performance. 

ACKNOWLEDGMENT 

The authors acknowledge Eureka/Sunrise/Early career Project with Ref: 

NECBH/2019-20/118] under North East Centre for Biological Sciences and 

Healthcare Engineering (NECBH) Twinning Outreach Programme hosted by 

Indian Institute of Technology Guwahati (IITG), Guwahati, Assam funded 

by Department of Biotechnology (DBT), Ministry of Science and 

Technology, Govt. of India with number BT/COE/34/SP28408/2018 for 

providing necessary financial support. 

REFERENCES 

[1] A. Shoeibi, et al.,“Epileptic seizure detection using deep learning 
techniques: A Review,” arXiv preprint: 2007.01276, 2020. 

[2] Inung, et al., “Seizure type detection in epileptic EEG signal using 
empirical mode decomposition and support vector machine,” IEEE Int. 
Seminar on Intell. Tech. and Its Appl., 2019. 

[3] Gómez, et al., “Automatic seizure detection based on imaged-EEG 
signals through fully convolutional networks,” Scientific Rep., 2020. 

[4] Cho, Kyung-Ok, and Hyun-Jong Jang. “Comparison of different input 
modalities and network structures for deep learning-based seizure 
detection,” Scientific Rep., 2020. 

[5] Sriraam, Natarajan, et al., “A convolutional neural network based 
framework for classification of seizure types,” 41st IEEE Ann. Int. 
Conf. of Eng. in Medicine and Biol. Soc. (EMBC), 2019. 

[6] Roy, Subhrajit, et al. “Seizure type classification using EEG signals and 
machine learning: Setting a benchmark,” IEEE Signal Process. in 
Medicine and Biol. Symp. (SPMB), 2020. 

[7] David, et al., “Neural memory networks for seizure type classification,” 
42nd IEEE Ann. Int. Conf. of Eng. in Medicine and Biol. Soc. (EMBC), 
2020. 

[8] Xu, Hongji, et al., “Human Activity Recognition Based on Gramian 
Angular Field and Deep Convolutional Neural Network,” IEEE Access, 
2020. 

[9] Johann Faouzi, et al., “pyts: A python package for time series 
classification,” J. of Mach. Learn. Res., pp. 1–6, 2020. 

[10] Wang, Zhiguang, and Tim Oates, “Imaging time-series to improve 
classification and imputation,” arXiv preprint: 1506.00327, 2015. 

[11] Bragin, A. D. et al., “Electroencephalogram Analysis Based on 
Gramian Angular Field Transformation,” CEUR Workshop Proc., vol. 
24852019, pp. 273–275, 2019. 

[12] Obeid, Iyad, and Joseph Picone. “The temple university hospital EEG 
data corpus,” Frontiers in Neuroscience, 2016. 

 
Fig. 4. The normalized confusion matrix obtained in classification of 

CPSZ, GNSZ, SPSZ, TCSZ, and SZF. 

 

TABLE II: PM OF BINARY CLASSIFICATION 

Seizure types 
PM (%) 

Acc F1 

CPSZ 

GNSZ 84.51 85.0 

SZF 92.51 93.0 

SPSZ 92.85 93.0 

TCSZ 92.49 90.0 

GNSZ 

SZF 90.04 90.0 

SPSZ 95.00 95.0 

TCSZ 85.76 85.0 

SPSZ 
SZF 96.01 96.0 

TCSZ 92.15 92.0 

TCSZ SZF 91.08 92.0 

 

TABLE III: PM OF CLASSIFICATION OF 3 SEIZURE TYPES 

Seizure types 
PM (%) 

Acc F1 

CPSZ 

GNSZ 

SZF 76.87 77.0 

SPSZ 81.35 82.0 

TCSZ 79.87 80.0 

SPSZ TCSZ 89.91 90.0 

SZF 
SPSZ 88.47 88.0 

TCSZ 78.50 78.0 

GNSZ 
SZF 

SPSZ 88.10 88.0 

TCSZ 82.50 82.0 

SPSZ TCSZ 87.71 88.0 

SPSZ SZF TCSZ 86.88 87.0 

 
TABLE IV: PM FOR CLASSIFICATION OF 4 AND 5 SEIZURE TYPES 

Seizure types 
PM (%) 

Acc F1 

4–class 

CPSZ 
GNSZ 

SZF SPSZ 79.62 80.0 

SZF TCSZ 79.05 79.0 

SPSZ TCSZ 79.67 80.0 

SZF SPSZ TCSZ 84.18 84.0 

GNSZ SPSZ SZF TCSZ 84.19 84.0 

5–class 

CPSZ GNSZ SPSZ SZF TCSZ 84.20 84.0 

 

TABLE V: A COMPARATIVE ANALYSIS 

Works Methods 
PM (%) 

Acc F1 

[5] 
EEG, basic CNN 82.14 - 

EEG, AlexNet 84.06 - 

[6] 
EEG, FFT, CNN 72.20 - 

EEG, FFT, k-NN 88.40 - 

This work 
EEG, GASF, 

CNN 

96.01a 96.0a 

89.91b 90.0b 

84.19c 84.0c 

84.20d 84.0d 

Note: a: binary, b: 3– types, c: 4– types, d: 5– types of seizure  
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