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Abstract— Recently, the interest in porous scaffolds design for
cell culture has increased. Because of the curvotaxis property of
the cells, they can respond to the curvature of the substrate in
which they are seeded, like changing their morphology, despite
that, curvature is little explored within scaffold design. What
is more, for bone regeneration, the scaffold should ideally have
a porosity gradient corresponding to the transition between
compact and cancellous bone. Various studies have focused
on finding the best geometry to mimic it, being the triple
periodic minimum structures (TPMS) the most promising ones.
However, as they are mathematically complex, researchers
have approximated them with implicit equations, no longer
respecting their minimum curvature when they vary the pore
size, deforming the original geometry. This work proposed to
approach the TPMS with parametric equations, finding an
exact fundamental patch. In this way showing its potential to
make customized structures with a porous gradient, thanks
to the acquisition of a constant of variation. This generates a
friendly user interface for the design of scaffolds. The work also
presents a comparison with the implicit structures, remarking
the benefits of using the parametric approach. Finally, it
presents examples of 3D printed designs.

I. INTRODUCTION

In the tissue engineering field, bone regeneration is one of
the most studied tissues since it can be damaged by multiple
causes, such as degenerative diseases, deep injuries or phys-
ical wear. The few resources to use transplant replacements,
like autograft, have increased the urgency to manufacture a
suitable scaffold to cultivate cells, with a specific geometry
that promotes the growth of tissue, imitating the original bone
anatomy [4]. However, to find the correct design is not a
simple task and has limited the complete tissue reproduction,
being one of the greatest area of opportunity to improve. To
begin with, the creation of a porous scaffold should consider
its curvature, since “curvotaxis” influences the behavior of
cells during differentiation (adhesion, migration and changes
in morphology). There are two types of curvature: “K”
or Gaussian (intrinsic), and “H” or mean (extrinsic). In
scaffolds with K>0, the fibers can compress the nucleus
and may not trigger the osteogenic pathways. Concave pits
(H<0) can increase migration compared with convex, but
they induce a “lift-off” behavior, hindering the attachment.
Hence, it is suggested that the scaffold should adopt a saddle-
like shape (K<0, H=0) [5]. The geometry of the bone has
interconnected pores following a gradient, starting with the
compact bone (porosity of ≈ 10%, average diameter of 0.10
mm). The diameter grows as it approaches to the center,
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the trabeculae (porosity of ≈ 90%, 0.50 mm to 1mm) [14].
Several designs have been proposed, commonly by stacking
fibers one onto another, forming quadrangular, triangular
or hexagonal void spaces [6], [2], or by opening circular
channels along a prismatic structure [3], however, these
forms are still far from giving a faithful imitation of the
aforementioned anatomy. Some researches begin to focus
on the Triple Periodic Minimum Surfaces (TPMS), which
have local minimal area and no self-intersections. TPMS
are symmetric and periodic in three independent directions,
having H=0 and K < 0. The principal ones are the Diamond
(D), the Primitive (P) and the Gyroid (G) [8]. TPMS have
been tested in regenerative medicine, finding that cell pro-
liferation in a G type scaffold incremented in comparison
with rectangular geometries, showing a 10-times greater
permeability [11]. However, TPMS have been modeled using
an implicit equation, approximated by a nodal sum in terms
of Fourier series [7]. This approach may be sufficient for a
general design of TPMS (porosity of 50%), but, as the pore
size is varied, the shape deforms, until it loses the properties
of minimal curvature. Furthermore, the meshing of implicit
surfaces for mechanical studies can be time-consuming and
can cause errors in finite element simulations. The major
contribution of this work is to parameterize the three main
TPMS (D, P and G) using the Weierstrass equations. It is
proposed a method to vary their porosity in order to design
a customized gradient with smooth transitions, close to the
bone anatomy. It is also shown a comparison between the
implicit and parametric approaches and an example of 3D
printed parametric structures is presented.

II. METHODOLOGY

This section describes the algorithm to parametrize the
TPMS by solving the Weierstrass equations and obtaining
a fundamental patch from which the entire surface can be
generated by symmetry operations. Then, it is presented the
procedure to find the constant for size variation along with
the methodology to design a porous gradient scaffold. The
procedures were performed in MATLAB 2019a r.

A. The Weierstrass parameterization

For minimal surfaces, Weierstrass showed that the coor-
dinates can be defined by a set of integrals in terms of
a complex number ω = u + iv [8]. The integrals were
treated as elliptic integrals; incomplete (F ) and complete
(K), and expressed in terms of the Jacobi’s and Legendre’s
form. Using a = 1 as the unitarian bounding cell, and κ as
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“the normalization factor”, the parametric equations for each
TPMS are:

For D, with κ = 2a
ellipticK(1/4) :
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For P, with κ = 2a
ellipticK(3/4) :
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For G, with K = ellipticK(1/4), K ′ = ellipticK(3/4),
K ′′ = K2 + K ′2, κ = a

√
K ′′/KK ′ and θ =

arccot[K ′/K] ≈ 38.014º:
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B. The fundamental patch

Equations (1) to (3), were evaluated in the specific domain
for each surface, within the complex plane, as indicated
in [8]. Once the fundamental patch (FP) was generated,
the complete structure was formed, first by obtaining a
“bounding cell” (BC) (joining 6 FP for the D and P, and 12
for the G), then by generating a “cubic cell” (CC) (using 4
BC for the D surface, and 8 for the P and G). The process of
joining the surfaces were achieved following the symmetry
operations indicated in [8], [9], [10].

C. TPMS pore size variation

Parametric equations (1)-(3) are defined for surfaces with
a specific surface-to-volume ratio of 50%, therefore, there
is not an exact equation to find their constant minimal
companions (CMC). This work aims to solve this problem
by a manipulation of the normal vectors, with the next steps:
• Obtain the normal vectors (NV) of each point on the

FP.
• Define a variable δ to indicate the pore size variation.
• Define an offset value, multiplying δ by NV.
• Add the offset value to the original coordinates.
• For the P surface, proceed to symmetry operations. For

the G, for the first two BC, δ should be positive, and
for the next two, δ should be negative, and so on. For
D, first BC should be positive, next one negative and
so on.

To control the pore size, a constant of variation was obtained,
first by measuring the surface strut and the pore size along
the diagonal of the CC, then by using a polynomial fit to
obtain the relationship between δ and the porosity measured,
based on [12].

D. Porosity gradient with TPMS

The smooth gradient was achieved without using any step
function, since the exact points of each CC were known. For
the internal bone anatomy, the compact part was represented
by the P surface, since the pores are interconnected horizon-
tally and vertically uniformly (also, its body centered cubic
BCC crystal configuration allows to mimic the amorphous
configuration of this bone section), with a porosity of ≈ 10%
and an average pore size of 0.100 mm. Then, the trabeculae
were be represented with the G surface, which gradually
increased its porosity from 60% to 90%, augmenting also
the diameter from 0.500 mm to 1.2 mm.

III. RESULTS

This part shows the results after applying the equations in
the previous section. The design proposal for a bone scaffold
is also presented. It is shown the comparison between using
implicit and parametric equations, as well as the potential
benefits of using the parametric methodology.

A. Parametric surfaces

Fig. 1 summarizes the process to obtain the complete
parametric surface of each type (D, P and G). After the
evaluation of (1) to (3), the FP was obtained, and then rotated
following the symmetry operations until the complete CC
was achieved. The normal vectors were computed and an
offset value was calculated in order to vary the pore size.

Fig. 1. Generation of the complete surfaces based on the fundamental
patch.

a)-c) P surface. a)Fundamental patch (FP). b) Complete cubic cell (CC).
c) CC pore size varied δ = 0.2. d)-f) D surface. d) FP. e) CC. f) CC

δ = 0.2. g)-i) G surface g) FP. h) CC. i) CC δ = 0.2

B. Porosity gradient

To control the pore size, the δ was characterized following
the methodology aforementioned. The δ value was varied
from -0.3 to 0.3 until self-intersections were observed. The
pore/strut ratio ξ was measured along its diagonal, and a
relationship between ξ and δ was obtained with a polynomial
fit (R = 0.9985), resulting in (4):

ξ = 32589.24δ
7 − 11034.59δ

6 − 2691.78δ
5

−1272.23δ4 + 116.19δ
3 − 18.13δ

2
+ 7.51δ + 1.03

(4)
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A relationship between porosity percentage n and a variation
constant C [12], is established in (5):

C = 0.786n
3 − 1.179n

2 − 2.529n+ 1.4597 (5)

However, (5) considers a variation in the implicit geometry,
with C from -1.5 to 1.5, therefore, it should be modified
according to δ range of variation δ = C∗0.3

1.5 . The relationship
between pore size (dimensionless) and δ is in (6):

PoreSize = 563.61δ
7 − 235.88δ

6 − 16.13δ
5

+30.09δ
4 − 0.29δ

3 − 0.03δ
2 − 1.69δ + 0.44

(6)

In this way, the coordinates can be adapted to the actual
pore sized desired by dividing it over the pore size obtained
with (6).

The design for a bone scaffold proposed in this work, as
described in the previous section, is depicted in Fig.2 and 3.

Fig. 2. Bone scaffold design with porosity gradient along x-axis. a) Surface
P, pore size of 0.10 mm and n = 10%. b) Surface G n = 60%, pore size
0.50 mm. c) Surface G, n = 90%, pore size 1.2 mm. d) Complete gradient
of the G part, with intermediate pore size to make a smooth transition.

Fig. 3. Solid designs to resemble the bone micro-architecture. Created in
MATLAB 2019a r and rendered with Blender r. a) G porosity gradient.
b) Scaffold showing the transition and hybridization between the P and G
geometries. c) G scaffold only for bone trabeculae. d) Scaffold to resemble
an oval section of the distal metaphysis of long bones.

C. Geometry analysis

With the parametric approach, exact TPMS were obtained,
preserving H=0 and K< 0. In Fig. 4, its difference against
implicit approximation is clear; in the implicit, as the pore
size varied, its shape changes by edge sharpening, which will
influence the cells behavior, since, when cells are subjected
to non-circular channels, the growth is slow, and there is risk
of detachment [5]. The H was computed for both surfaces,

resulting in 0 for the parametric, and 3.3077−6 for the
implicit, which although is small, is not 0, as should be for
TPMS.

Fig. 4. Pore shape differences between P surfaces generated with the
parametric approach versus the implicit equation [7]. a) P parametric n =
90%, b) P implicit n = 90%. c) P parametric n = 10%. d) P implicit
n = 10%.

Another benefit of a parametric structure based on a FP
is that it allows the analysis of some of its properties in
a simple way without having to study the entire scaffold,
thanks to the periodicity of the TPMS and the homogeneity
that is gotten from the patch. For instance, continuing with
the influence of curvature on cell behavior, Fig. 5 shows a
diagram representing the points of cell adherence on the FP
based on [1], [5]. A “chord analysis” can be performed on
the FP considering that it will behaves as a saddle surface
due to K< 0, moreover, the H=0 can decrease the risk of
detaching.

Fig. 5. FP curvature and a diagram of possible cell adhesion points. The
points indicate less possibility of cell detaching and no nucleus stress due
to stretching or compressing on cylindrical surfaces for example.

Mechanical stress simulations can also be performed on
the FP, as presented in Fig. 6, where is shown an example
of a Finite Element Analysis for displacement, done on a
FP and CC of P type, with a Young modulus of 34.3 kPa
(considering GelMa hydrogel [13]), a Poisson ratio of 0.167
and a vertical force of 1 MPa applied on the superior faces
[3]. The analysis on the FP can be useful to determine
exact zones of displacements. The time used to compute the
simulation in the FP was two times less than in the CC.

D. Applications

To make this work useful to design diverse tissue scaffolds,
a graphical user interface was implemented (Fig. 7). It will
only need a few inputs, like TPMS type, pore size and
gradient direction. It will do all calculations according to
the previous methodology, ending with the solid file, ready
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Fig. 6. Finite element analysis example for a P parametric structure

for additive manufacturing, as presented in the examples of
Fig. 8.

Fig. 7. Graphic user interface to generate distinct scaffold geometries.

.

IV. DISCUSSIONS

A new methodology was proposed and implemented with
the final goal of designing a bone porous scaffold us-
ing TPMS modeled with parametric equations. The above
results, showed that a parametric mesh can be obtained
by solving the Weierstrass equations, resulting in exact
representation of these surfaces, respecting their minimal
curvature that otherwise will be lost (with implicit equations).
This curvature preservation is a potential benefit for cell
growth and adherence. One of the major added value is
the pore size variation of the surfaces in the parametric
space, allowing continuous transitions and the possibility
to represent different parts of the bone architecture. This
aspect, along with the curvature, are what make the scaffold
to be biomimetic. Moreover, this design procedure allows the
exportation of solid files which can be directly 3D printed.
This methodology possess a new option for modeling cell
growth in distinct scaffolds, since it can be analyzed from
a FP. This can suggest that parametric TPMS have potential
to be used to mimic different anatomical shapes, enabling
even the combination with patient-specific data. Therefore a
graphical interface is proposed for the design of scaffolds
not only for bone, but for different tissues.

Fig. 8. 3D printed structures. a) Stereolitography process to obtain the
structures, using black resin and a Form 2®printer [15]. b) Transition
between P n = 10% and a G gradient (60 - 90 %). c) G structure n = 90%.
c) P and G structure enclosed in an oval shape.
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