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Abstract— Photoacoustic (PA) imaging is a new imaging
technology that can non-invasively visualize blood vessels and
body hair in 3D. It is useful in cosmetic surgery for detecting
body hair and computing metrics such as the number and
thicknesses of hairs. Previous supervised body hair detection
methods often do not work if the imaging conditions change
from training data. We propose an unsupervised hair detection
method. Hair samples were automatically extracted from
unlabeled samples using prior knowledge about spatial
structure. If hair (positive) samples and unlabeled samples are
obtained, Positive Unlabeled (PU) learning becomes possible.
PU methods can learn a binary classifier from positive samples
and unlabeled samples. The advantage of the proposed method
is that it can estimate an appropriate decision boundary in
accordance with the distribution of the test data. Experimental
results using real PA data demonstrate that the proposed
approach effectively detects body hairs.

I. INTRODUCTION

Photoacoustic (PA) imaging is a non-invasive visualizing
method that can visualize the 3D structure of blood vessels
and body hair. In the PA imaging process, tissue is irradiated
by a laser and emits the absorbed laser energy as ultrasonic
waves. The 3D structure of the tissue can be visualized by
sensing the ultrasonic waves [1]. In addition to blood vessels,
body hair has the PA characteristics (Fig. 1). Metrics of body
hair, such as the number and thickness of hairs, are useful in
research on alopecia and cosmetic surgery. Since it is time-
consuming to detect many hairs in clinical practice, a method
to automatically detect body-hair is desired.

Traditional image-processing approaches have limitations,
since body hairs and blood vessels often touch each other
along with PA artifacts. On the other hand, supervised
learning, such as convolutional neural network (CNN)-based
segmentation [2], works if the imaging condition between
training and test data is the same. However, the setup of
the imaging device and the patient often differ in practice.
Kikkawa et al. [3] proposed semi-supervised learning, which
is widely used in computer vision [4], [5], for body hair
detection. However, it also has the same drawback. Many
labeled samples are required to learn a body hair classifier
that works robustly for various setup. However, it is expen-
sive to make such annotated data from 3D volume images,
and the available data are limited because PA imaging is a
new technology.

The aim of this study is to learn discriminative features
of body hairs for an input image without any manual
annotations. Fig. 2 shows our framework. The key idea of
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Fig. 1. Example of 3D volume captured by PA imaging. Body hair often
touch blood vessel as shown in the red circle and body hairs have various
intensities.

this study is that the unlabeled candidate’s regions, which
may belong to a body hair or other regions, can be detected
using image processing and a subset of positive samples can
be automatically extracted from unlabeled samples on the
basis of prior knowledge of spatial structure, in which body
hairs usually appear on the surfaces of the body.

As a result, we can obtain positive labeled samples and
unlabeled samples, and this enables positive-and-unlabeled
(PU) learning [6], [7], which learns a binary classifier only
from positive samples and unlabeled samples, to be applied
to this task. One important idea is to extract positive samples
by using features different from those in the feature space
used during PU learning. Not only PU learning but also
general machine learning methods need to use sample data
sampled at random from the population. Therefore, it is
important to design the features used during PU learning
so that they do not correlate with the features used during
positive example extraction. Experiments demonstrate that
our method can detect body hairs without any human anno-
tation. The advantage of our approach is that it can estimate
appropriate decision boundaries according to the distribution
of the test data. Accordingly, complicated annotations can be
omitted and applications to various fields can be expected.
Related work: Positive-and-unlabeled (PU) learning [6]
is a promising novel machine learning problem that per-
forms binary classification from positive labels and unlabeled
samples. Many methods have been proposed for ensemble
learning [8], Bayes classifier [9], and time series classifi-
cation [10], and PU learning has been applied to several
applications, particularly text analysis: opinion analysis [11],
spam detection [12], and gene expression analysis [13].
These methods assume that positive samples are given with
supervised labels, which is the original problem setup. In
contrast to the current methods, we use PU-learning for the
unsupervised problem by automatically detecting a subset of
positive samples using prior knowledge of spatial structures.
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Fig. 2. Overview of proposed framework

II. UNSUPERVISED BODY HAIR DETECTION
BY PU LEARNING

In this section, we explain the proposed method for
detecting hair in a PA image that can reformulate the original
detection problem as the PU learning problem. First, the
method detects hair candidate regions redundantly from a 3D
volume PA image. PU learning is possible because a subset
of hair samples is automatically extracted from unlabeled
samples by using prior knowledge of spatial structures in
the image. If a low recall score is allowed, it is easy
to extract some positive hair regions. Then, given positive
labeled samples and unlabeled samples, we use PU learning
to classify unlabeled candidate regions into hairs and other
regions, in which we use different features for classification
from those used for positive sample extraction in order to
maintain the randomness of the extracted positive sample
distribution in the feature space. One key point is that this
process is performed on each test data. The proposed method
learns a discriminative feature distribution for each test data;
thus, it is not restricted by the imaging setup or the condition
of the patient.

A. Hair candidate region detection

It is difficult to recognize hair regions at the voxel level
because regions of hairs and blood vessels have locally
similar features, in which the intensity distribution is similar,
and voxels with high intensity form cylindrical shapes. On
the other hand, each object in an image has features useful
for identifying differences in the intensity distribution. In this
research, we aim to recognize body hairs at the object level.

The goal of this step is to make candidate regions re-
dundantly so that most true positives are included in the
candidate set. As we discussed in the introduction, there are
many body hairs near blood vessels. Since radial artifacts
often appear around an object, the intensities of the regions
between the body hair and the blood vessels are higher than
the background level, and the brightness may take on various
values. Thus, it is difficult to separate the regions by using
a single threshold. To address this, we follow the detection
method proposed by Kikkawa et al.[3]. Because the intensity
of the artifact is usually slightly less than the sound source
(i.e., vessels and hairs), candidate regions are extracted by
using multiple-level thresholds to separate all the regions. We
set K thresholds and used each threshold to segment images
into candidate regions and background.

These candidates can be considered as unlabeled data since
these may contain both of body hairs and other noise regions.
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Fig. 3. Overview of automatic extraction of body hair; Left: original image,
Middle: results of surface fitting, Right: extracted positive samples.

B. Automatic extraction of body hair using prior knowledge
of spatial structures in photoacoustic volume

In this step, we automatically identify the subset of posi-
tive samples from these candidates. We use prior knowledge
of the structure of the photoacoustic image space: many body
hairs appear along the body surface, and some of them are
above the blood vessels (although not always). The body
surface can be roughly estimated by fitting the 3D points
of the object in the photoacoustic volume by using robust
regression [14]. Using this body surface as a threshold in
the height direction in the volume, a candidate region located
above it is determined to be body hair, and is regarded as a
positive sample in the training data. Fig. 3 shows the example
results by this step. The precision of the extracted body hair
regions is high, although the method cannot extract all body
hairs, in which the other body hairs remain in the other
candidate regions. This indicates that the extracted regions
can be considered as the subset of positive samples, and the
other candidate regions extracted in the previous step can be
considered as unlabeled samples (positive or negative).

C. Feature extraction for PU learning

PU learning assumes that the extracted positive samples
must be randomly distributed in all the positive samples in
the feature space used for PU learning. Because we used
the position of body hairs in a body, we cannot use this
feature for PU learning in order to avoid the lack of the
randomness. In our observation, the position of hairs in the
body is not correlated with the intensity feature of hairs;
the regions of hairs placed near the surface have various
intensity values, and the deeper area contains both low-
and-high-intensity hairs. We simply use the intensity-based
features proposed in [3]. We expect that the positive samples
extracted in the previous step tend to be randomly distributed
in this intensity-based feature.
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D. PU learning

Given positive samples identified as body hairs and other
unlabeled samples, we use PU learning to classify whether
a sample is a body hair or not. To make the paper self-
contained, we explain two methods of PU learning below;
error minimization [6] and area under the curve (AUC)
maximization [7].

1) PU learning based on error minimization: We first
explain the general binary classification problems. An appro-
priate classifier can be learned by minimizing a risk function
as follows:

RPN (g) = πEP [l(g(XP ))] + (1−π)EN [l(−g(XN ))], (1)

where π is the prior probability of the positive samples, l
is the loss function, g is the classifier, and positive samples
XP (class label y = 1) and negative samples XN (class
label y = −1) occur according to the distribution of p(x|y).
The first term on the right side represents the loss when a
positive sample is mistaken as a negative sample, and the
second term represents the loss when a negative sample is
mistaken as a positive sample.

PU learning needs to learn the classifier from only a subset
of positive examples and unlabeled samples, which include
positive and negative examples; thus, it cannot directly
calculate the second term in the function (Eq. 1). If an
unlabeled sample is used as a negative sample, excessive
loss may occur. An objective function that can be optimized
using cost-sensitive learning is

RPU (g) = πEP [l(g(XP ))− l(−g(XP ))] + EU [l(−g(XU ))],

(2)
where XU is unlabeled samples. In the first term, when a
positive sample can be classified as such, the excess loss in
the second term is offset by outputting a negative value. To
find a globally optimal solution in practice, a surrogate loss
composed of a convex function, such as the logistic loss, is
selected. According to research by Plessis et al.[6], learning
to minimize this function (Eq. 2) is equivalent to minimizing
the function (Eq. 1). The positive prior probability π in
the training data needs to be estimated for optimizing the
objective function, and the distribution must be estimated
from unlabeled data. However, in our data, we do not always
know the ratio of the positive samples.

2) PU learning based on AUC maximization: We in-
troduce the blind AUC (BAUC) maximization method that
applies the existing AUC maximization to the PU problem
by considering unlabeled samples as negative samples.

In general PU classification tasks, the number of training
samples is often biased to one class, and negative samples
are dominant in most cases. At this time, it is difficult to
minimize the expected loss, and hence, the decision boundary
would be wrong. On the other hand, AUC is suitable for
evaluating the classifier in the PU classification task, AUC is
invariant to the ratio of positive samples in the training data.
In addition, there is an advantage that it is not necessary
to estimate the prior probability of positive samples when
learning.

Fig. 4. Maximum intensity projection images of 3D volumes used for
experiments for data 1 (Left) and data 2 (Right), in which the image
contrast manually was adjusted for visualization purpose. The number and
the intensity of body hairs are significantly different between the data.

TABLE I
THE SAMPLE NUMBER ASSIGNMENTS

Body hair Other Extracted body hair
Data 1 2120 4612 476
Data 2 978 6466 184

The goal is to update the learning parameters to maximize
AUC, but in the PU classification task, negative samples are
not available, so the value of the AUC cannot be obtained
directly. Therefore, in the proposed method, the unlabeled
samples are blindly considered to be negative samples. The
function ̂BAUC for this pseudo AUC is shown below.

̂BAUC(f) :=
1

nUnP

∑
xU∈XU ,
xP∈XP

1(f(xP ) > f(xU )), (3)

where the ranking function f is a linear sum of the input
and weight, and nU and nP are the number of unlabeled
samples XU and positive samples XP . According to research
by Ren et al.[7], maximizing this function (3) is theoretically
equivalent to maximizing the standard AUC.

Maximizing ̂BAUC is equivalent to minimizing 1− ̂BAUC
as follows

min
f

1− ̂BAUC(f) =
1

nUnP

∑
xU∈XU ,
xP∈XP

1(f(xP ) ≤ f(xU )). (4)

This function penalizes when ranking function scores of
positive samples is larger than that of unlabeled samples.
In other words, when all samples are arranged in ascending
order of the ranking function score, this function is optimized
such that the scores of the positive samples are higher than
those of most unlabeled samples.

III. EXPERIMENT

A. Dataset

We evaluated our method on two real 3D PA volume
datasets captured from patients, in which the total number of
hairs is 3098. For simplicity, IDs 1 and 2 were assigned to
each volume (Fig. 4). In these two images, the numbers and
the intensities of the body hairs are significantly different.
To generate the ground truth for evaluating performance,
we annotated the endpoints of body hairs for two real
3D PA volumes. In the experiment, positive samples were
automatically extracted, and other candidate regions were
trained as unlabeled samples. Table I shows the sample
number assignments for the hair class, other class, and the
automatically extracted hair class in each volume.
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Fig. 5. Visualization of feature distribution using by PCA for Data1 (Left)
and Data2 (Right). Red and yellow circles indicate true and pre-extracted
hair samples, respectively.

TABLE II
RESULTS OF AUC EVALUATION EXPERIMENT

Method Data1 Data2
Surf. Fit. 0.651 0.727

ERR(10%) 0.337 0.809
ERR(20%) 0.747 0.894
ERR(30%) 0.870 0.913
ERR(40%) 0.897 0.916
ERR(50%) 0.910 0.916

BAUC 0.910 0.916

B. AUC evaluation on two PU learning methods

We tested a image processing-based method and two PU
learning methods using automatically extracted body hair
samples and unlabeled samples: 1) the body hair regions
were extracted by multi-thresholding and surface fitting
(Surf. Fit.), in which the AUC was computed by moving the
surface curves, 2) error minimization (ERR), 3) BAUC max-
imization (BAUC), and quantitative evaluation using AUC
values for comparison1. The learning and evaluation were
performed independently for each volume. The loss function
of each method was the logistic loss, log(1 + exp(−z)). In
addition, since in practice, the prior probability of positive
samples π cannot be given in the error minimization method,
we evaluated the method using five π values (10 to 50 %).

Table II summarizes the AUC values obtained by each
method. The image processing-based method (Surf. Fit.)
could not work well since the parts of vessel regions have
similar appearances to body hairs. For ERR, the AUC values
fluctuated sensitively to changes in the given prior probability
of the positive samples. The tendency was prominent in
data 1, and the AUC values tended to deteriorate as the
value of the small prior probability was decreased. This is
because the number of hair class samples in the training data
was extremely small and the loss when mistaking a positive
sample as an unlabeled sample is negligible. On the other
hand, for BAUC, AUC values were stable for all images.

C. Visualization of feature distribution

To analyze if the assumption of PU learning, in which
positive samples are randomly sampled in the feature space,
is true in the experiments, we qualitatively evaluated the fea-
ture distribution of the true hair class and the automatically
extracted body class. For visualization, the 33 dimensions
of feature vectors were reduced to 2 dimensions by using
principal component analysis (PCA); these are plotted in

1No existing method can detect body hairs in un unsupervised problem
setup.

Fig. 5. The extracted body hairs are distributed similarly
to that of the population. Therefore, to some extent, this
validates the assumption by extracting positive samples from
features other than the feature space used for PU learning.

IV. CONCLUSION

We proposed an unsupervised body hair detection method
in photoacoustic 3D images. Our main contribution is that
we reformulate the detection problem as a Positive-Unlabeled
(PU) learning problem setup and the subset of positive sam-
ples is automatically extracted by using prior knowledge on
spatial structures in the photoacoustic volume. Experimental
results revealed that our method can detect body hairs with
an unsupervised setup. The advantage of our approach is that
it can estimate appropriate decision boundaries according to
the distribution of the test data. Accordingly, complicated
annotations can be omitted and applications to various fields
can be expected.
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