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Abstract— Small rodent cardiac magnetic resonance imaging
(MRI) plays an important role in preclinical models of
cardiac disease. Accurate myocardial boundaries delineation
is crucial to most morphological and functional analysis in
rodent cardiac MRIs. However, rodent cardiac MRIs, due to
animal’s small cardiac volume and high heart rate, are usually
acquired with sub-optimal resolution and low signal-to-noise
ratio (SNR). These rodent cardiac MRIs can also suffer
from signal loss due to the intra-voxel dephasing. These
factors make automatic myocardial segmentation challenging.
Manual contouring could be applied to label myocardial
boundaries but it is usually laborious, time consuming, and
not systematically objective. In this study, we present a deep
learning approach based on 3D attention M-net to perform
automatic segmentation of left ventricular myocardium. In
the deep learning architecture, we use dual spatial-channel
attention gates between encoder and decoder along with
multi-scale feature fusion path after decoder. Attention gates
enable networks to focus on relevant spatial information
and channel features to improve segmentation performance.
A distance derived loss term, besides general dice loss and
binary cross entropy loss, was also introduced to our hybrid
loss functions to refine segmentation contours. The proposed
model outperforms other generic models, like U-Net and
FCN, in major segmentation metrics including the dice score
(0.9072), Jaccard index (0.8307) and Hausdorff distance
(3.1754 pixels), which are comparable to the results achieved
by state-of-the-art models on human cardiac ACDC17 datasets.

Clinical relevance Small rodent cardiac MRI is routinely
used to probe the effect of individual genes or groups of
genes on the etiology of a large number of cardiovascular
diseases. An automatic myocardium segmentation algorithm
specifically designed for these data can enhance accuracy and
reproducibility of cardiac structure and function analysis.

I. INTRODUCTION

Cardiac magnetic resonance imaging (MRI) is the current
gold standard for clinical quantitative cardiac analysis due to
its accurate measurement of both anatomy and function [1],
[2], which is crucial to any reliable cardiac analysis [3], [4].

Traditional segmentation tasks include image processing
and machine learning methods, such as active shape models
[5] and atlas-based methods [6]. However, these methods
often require manual intervention, extensive feature engineer-
ing, and prior-knowledge incorporation.
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Fig. 1. Signal loss within myocardium: An example of left ventricular
chamber with dark band (Red arrow) due to magnetic field inhomogeneity-
induced signal void in myocardium.

In recent decades, deep learning algorithms, especially
Convolutional Neural Networks (CNN), have succeeded in
various automatic medical image segmentation tasks [7],
[8]. Among those, Fully Convolutional Network (FCN) [9]
and U-Net [10] have been utilized for cardiac segmentation.
These works, however, mainly focused on 2D slices rather
than 3D volumes due to the low out-of-plane resolution and
motion artifacts in clinical cardiac MR scans. As a con-
sequence, they do not account for inter-slice dependencies
by performing slice-by-slice workflow. More recent works
such as U-net [11], V-net [12], and M-net [13] have focused
on network structure refinement to enhance feature learning.
Compared to original FCN, these models reuse encoded
features from inputs more effectively. Therefore, they are
widely applied in biomedical image segmentation, especially
in low signal-to-noise ratio (SNR) applications. Other state-
of-the-art approaches to improve networks’ performance
include supervision enhancement, loss function modification,
and attention techniques. For example, deep supervision in
[14], [15], [16] is utilized to regularize network to capture
more meaningful high-level features. Many loss functions,
such as weighted cross-entropy, weighted Dice loss, focal
loss [17], and distance loss [18], were proposed to over-
come imbalanced data issues and to refine the boundaries
of segmentation. More recently, attention gates [19] were
highlighted in conditioning and regularizing deep learning
networks to capture better local features in segmentation.

The aforementioned models aim at human cardiac MR
segmentation. Hammouda et al. [20], recently proposed a
novel FCN-based approach to perform the localization and
segmentation of the LV cavity and myocardium. Compared to
their works, we have focused on developing a deep learning
technique that segments left ventricular myocardium in mice
cardiac MRI at early and advanced disease stages (signifi-
cant wall thinning at infacrion site), using higher magnetic
fields. In comparison to human cardiac anatomy, a mouse
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Fig. 2. Attention M-net Architecture. The model consists of encoder, decoder, and dual attention gates.

heart is much smaller, resulting in a lower SNR, relatively
low spatial resolution, partial volume averaging and blurry
boundaries. One way to improve SNR is to acquire images
using higher magnetic field strength. However, magnetic
field inhomogeneity that is typically observed at this higher
field introduces image artifacts such as signal loss due to
intra-voxel dephasing at the air-tissue boundaries in regions
where the cardiac wall is in the vicinity of lung parenchyma
(Figure 1). Similar to human cardiac MR studies, we also
observe slice-to-slice misplacement due to sequential 2D
acquisition scheme. To address these challenges, we have
proposed a novel pipeline by applying modified M-net with
dual attention gates to 3D volume segmentation, and intro-
duced a distance derived loss function for optimal boundary
refinement of segmentation.

The major contribution of our work is to use a unique in-
house dataset of mice cine cardiac MRI data that contains
both normal and diseased heart (myocardial infarction) to
develop a new pipeline for 3D left ventricular myocardium
segmentation based on 3D M-net architecture with attention
to a new distance derived loss function. Our initial analysis
shows that the proposed approach achieves better perfor-
mance in Hausdorff distance than other current state-of-the-
art generic models with a comparable dice score.

II. METHODOLOGY

The detailed model architecture is depicted in Figure 2.
The proposed 3D Attention M-net consists of two major
parts: an encoder and a decoder each with four levels. In
addition, a dual attention gate is applied between the encoder
and decoder at each level to refine the features from the
encoder.

A. Encoder

Before the encoder, the cropped MRI volumes of size
96 × 96 × 36 × 1 are first inputted into a convolution
layer to increase the feature channels to 16. Then, they are
down-sampled by max-pooling layers as parallel inputs to
corresponding encoder levels. Each encoder level consists
of a cascade of 4 convolution blocks following a max-
pooling layer for next-level encoders. Each convolution block

includes a 3D convolution layer with a Batch Normalization
layer and a ‘ReLU’ activation layer.

B. Decoder

The first half part of a decoder mirrors the encoder part.
Then, a multi-scale fusion network concatenates and fuses
the up-sampled features from decoders at each level into the
final output. The fusion network includes two 3 × 3 × 3
convolution layers and a 1× 1× 1 convolution layer with a
’Sigmoid’ activation layer to generate the final output.

C. Dual Attention Gate

Between encoders and decoders at each level, we utilized
the dual attention gate proposed by Khanh et al. [19] to
regularize our network to focus on extracting meaningful
contextual features from encoders and decoders along the
spatial and channel dimensions. With the help of the attention
gates, the decoders can more efficiently utilize encoded
features to generate the final segmentation. As illustrated in
Figure 3, the dual attention gate is made up of a spatial
attention gate and a channel attention gate.

D. Loss functions

For our dataset, most errors occur around the segmentation
boundaries due to the low SNR and artifacts from signal
loss within myocardium. Therefore, in addition to a common
loss function such as Generalized Dice Loss (GDL) and Bal-
anced Cross-Entropy (BCE) to conquer the imbalanced voxel
classes (relatively small myocardium volume compared to
the background), we included an additional distance-derived
loss (DDL) for contour refinement of the final segmentation.

1) Generalized Dice Loss (GDL): Sudre et al. [21] pro-
posed an extension of dice loss with different weighting for
each pixel class, which proved to be effective in unbalanced
classes segmentation task.

2) Balanced Cross-Entropy (BCE): Xie et al. [22] pro-
posed the BCE loss by adding a modulating factor in the
original binary cross entropy loss to tackle class imbalance.
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Fig. 3. Architecture of Dual Attention Gate. The dual attention gate (a), taking both encoder outputs and up-sampled decoder outputs as inputs, is
made up by two sub-blocks: (b) channel attention block, and (c) spatial attention block.

3) Distance Derived Loss (DDL): Caliva et al. [18]
created a custom penalty based loss function, using distance
maps derived from ground truth to weight the cross entropy
loss. Inspired by their work, we propose a new term of
loss function, focusing on segmentation contour refinement.
We first generate a weight map W based on the ground
truth mask. For each pixel in the weight map, the weight
is equal to the reciprocal of the closest Euclidean distance
to the ground truth mask. Let PG = {g1, g2, . . . , gn} be
the set of valid positions from ground truth mask, where
gi = (gix, giy). The difference between prediction and
ground truth is then multiplied by the weight map W (x, y) =
1/(min

i

√
(x− gix)2 + (y − giy)2+1). The voxels closer to

the ground truth are assigned larger weights so that this loss
term enables the model to focus more on contours. This is
defined as:

DDL =

∑
x

∑
y (W (x, y)· | P (x, y)−G(x, y) |)∑

x

∑
y G(x, y)

(1)

where P (x, y) and G(x, y) represent the labels of predicted
and ground truth pixels, respectively.

In our model, we have used a combination of three afore-
mentioned losses to address class imbalance (GDL, BCE),
and to perform contour refinement (DDL). The combined
loss is defined as: Lcomb = λ1 ·GDL+λ2 ·BCE+λ3 ·DDL
Where · represents scalar product. We have also introduced
deep supervision on the decoders at each level in our model.
The final loss function is a weighted sum of the losses from
the decoders at all 4 levels: Ldeep =

∑4
n=1 wn · Lcombn

III. EXPERIMENT

A. Dataset

As a part of an ongoing project, in-vivo heart MR images
of adult male wild type mice and Galectin-3 knockout mice
were acquired at different stages of disease following sham
surgery or induction of myocardial infarction (pre-op, and
days 1, 7, and 56) using an MRI spectrometer equipped
with a 11.7T magnet. Details of image acquisition has been

provided elsewhere [24]. The animal protocol was approved
by the Institutional Animal Care and Use Committee of the
Johns Hopkins University (protocol numbers: MO16A398
and MO19E374).

The myocardium was manually segmented in each short-
axis image by two people (inter-rater agreement of 89%
based on dice scores) using a free semi-automatic software
package in MATLAB called ’Segment’ [25]. In principal,
manual segmentation of the left ventricle was performed
following recommendations by Schulz-Menger et. al [26].
Endocardial and epicardial contours were traced on short-
axis cine images at several time points during the cardiac
cycle, with simultaneous viewing of short and long-axis
images of the same region, if applicable. Papillary muscles
and trabecular tissue were excluded. The most apical region
was identified as a section where left ventricular epicardium
was visible, while the most basilar section was selected at the
level of outflow tract. Delineation excluded the aortic valve
cusps resulting in a myocardial segmentation that resembled
crescent shape. The contours were then interpolated across
all time points of the cardiac cycle, and manually examined
to correct for any interpolation errors. Segmentations were
then reviewed by an expert with more than 14 years of expe-
rience in cardiac MR research. We used 1114 fully annotated
volumes that were collected from the repeated acquisitions
(each contained multiple time frames per cardiac cycle) of
several animals who underwent surgery and followed over
the course of disease. The data was split into three subsets:
700 for training, 200 for validation, and 214 for testing. To
prevent information leakage, scans from same rodents are
kept in the same partition while ensuring similar myocardial
volume distribution across all groups. Since the gap between
slices (0.8 mm) is significantly larger than in-plane pixel
size (0.1307 mm), linear interpolation was performed to
upsample the inter-slice gap to 0.16 mm for each image
volume. Thus, the data size was augmented to 96×96×36×1.

To improve robustness and generalization, we also per-
formed data augmentation by applying random shift (up to
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TABLE I
SEGMENTATION EVALUATIONS OF COMPARATIVE MODELS

Model Parameters Dice Score Jaccard Index Hausdorff Distance Sensitivity Specificity PPV NPV
2D U-net 24,902,996 0.8677 0.7675 4.83 (0.6315) 0.8762 0.9957 0.8604 0.9963
3D U-net 24,502,812 0.8732 0.7728 4.62 (0.6037) 0.8975 0.9951 0.8475 0.9969

DeepMedic 24,505,161 0.8883 0.7995 4.59 (0.6003) 0.9109 0.9812 0.8693 0.9877
3D FCN 24,128,560 0.8894 0.8015 4.32 (0.5641) 0.9212 0.9867 0.8636 0.9927

3D Att-Mnet (w/o distance loss) 24,657,034 0.8953 0.8111 4.00 (0.5231) 0.9286 0.9869 0.8664 0.9934
3D Att-Mnet (w/ distance loss) 24,657,034 0.9072 0.8307 3.18 (0.4150) 0.9249 0.9891 0.8913 0.9927

• The unit of Hausdorff distance is pixels(mm). Smaller Hausdorff distances mean better alignment between contours of ground truth and prediction.
• PPV: positive predictive value; NPV: negative predictive value.

15 pixels), uniformly varying rotation (within 15 degrees),
and horizontal/vertical flips, with a probability of 0.5.

B. Implementation Details

The model is built by tensorflow and Keras in python
on an Intel Xeon E5-2620 v4 CPU model with 2 Titan V
GPUs. After hyperparameter tuning, the deep supervision
loss Ldeep, as described in the previous section, was set
with weights wi of the first level at 1 and others at 0.5.
For the combined loss Lcomb at each level, we set λ1, λ2, λ3
to 1.0, 1.0 and 3.0. The model was optimized by Adam
method with a learning rate of 10−4 and batch size of 8. For
all experiments, we trained the networks from scratch for
150 epochs. The learning rate was automatically adjusted
by monitoring callback on plateau, allowing the optimizer
to more efficiently reach the local minimum. The monitored
callback is the generalized dice loss of the final level output
with setting parameters patience to 8, factor to 0.5 and
min delta to 0.0001.

C. Results and Comparison with other models

We compare the proposed model with 4 state-of-the-
art segmentation models: 2D U-net [10], 3D U-net [11],
DeepMedic [23] and 3D FCN [9]. All models use similar
sizes of trainable variables for fair comparison and are
trained with the loss functions proposed in their original
publications. The segmentation performance is quantitatively
evaluated by metrics including mean Dice Score, Jaccard In-
dex, Hausdorff Distance, Sensitivity and Specificity, Positive
predictive value (PPV) and Negative predictive value (NPV).
Results are summarized in Table 1.

According to Table 1, our proposed models outperform
all the state-of-the-art models in dice score, Jaccard index,
and Hausdorff distance, with comparable performance in all
other metrics. The mean dice score of our 3D attention M-
net is 0.9072, which is better than other methods: 3D U-
net (0.8732), DeepMedic (0.8883) and 3D FCN (0.8894)
with similar Sensitivity and Specificity. This indicates that
our model has better general myocardium segmentation
performance than other models in the mice MR cardiac
images. Furthermore, compared to the dice score agreement
between our two annotators, which is 0.89 over 150 samples,
our model has achieved comparable performance (0.9072).
The proposed model has also demonstrated a potentially
comparable performance on the mice dataset as compared
to the state-of-the-art myocardium segmentation models on

the human cardiac dataset ACDC17 [27], whose dice scores
are around 0.9 on ACDC17 dataset.

In Table 1, there is a noticeable improvement from 2D U-
net to 3D U-net in Hausdorff distances (-0.2142, p = 0.0068
using two-sided Wilcoxon rank sum test). This could be the
benefit of the 3D model’s ability to incorporate inter-slice
contextual information to achieve better 3D segmentation
when compared to the 2D model. The contextual information
from adjacent slices could enable better segmentation in each
slice, especially for the apical slice (Slice #8 in Fig. 4),
which typically contains smaller myocardium and suffers
from larger signal loss due to its adjacency to the lung
pareynchyma. In the selected case shown in Figure 4, the
segmentation of the 2D Unet, compared to all other 3D
whole-volume networks, has noticeably worse performance
and boundary refinement. DeepMedic also has the same
problem at the last slice. This could be because DeepMedic
is a local batch-wise 3D network, which does not fully utilize
the whole volume contextual information.

Among all 3D models, our proposed models stands out
with a noticeably smaller Hausdorff distance. The Att-Mnet
without the proposed distance loss has already successfully
refined the final segmentation boundary to achieve 4.0026px
in Hausdorff distance, which is at least 0.3px less than all
other competitive models in Table 1. This shows that our
proposed M-net with dual attention gates (Att-Mnet) has
better segmentation accuracy than others with similar compu-
tational complexity (the number of the trainable parameters).
Moreover, our Att-Mnet with the proposed distance loss
further reduces the Hausdorff distance to 3.1754px. This is
a major improvement −0.8272px from our Att-Mnet with-
out the proposed distance loss function. This demonstrates
that the proposed distance loss has enabled our model to
effectively refine segmentation contours. This will improve
the accuracy of global left ventricular volumetric measure-
ments such as end-diastole and ends-stole volumes, ejection
fraction, and myocardial mass, as well as the accuracy of
computational analysis of ventricular shape and motion.

IV. CONCLUSION

In this study, a 3D M-net model with dual attention
gates and a distance derived loss term was proposed for
myocardium segmentation, tackling the challenges of low
image quality and signal loss in mice MR cardiac images.
The experiment results indicate that our proposed model not
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Fig. 4. Comparison of partial segmentation results on a selected volume. Column 1: MRI; Column 2: manual ground truth; Column 3-8: yellow,
green and red masks represent true positive, false negative and false positive, respectively. Mnet: 3D attention M-net; DDL: distance derived loss.

only outperforms other benchmark models, including U-Net
and FCN, in dice score and contour agreement (Hausdorff
distance), but also has very comparable performance as
experienced human annotators. The proposed model enables
a fast, objective, and accurate myocardial boundaries de-
lineation of rodent cardiac MRIs, and has strong potential
application in morphological and functional analysis for
preclinical cardiac models.

REFERENCES

[1] C. B. Marcu, A. M. Beek, and A. C. van Rossum, “Clinical ap-
plications of cardiovascular magnetic resonance imaging,” Canadian
Medical Association Journal, vol. 175, no. 8, pp. 911–917, Oct. 2006.

[2] D. Pennell, “Clinical indications for cardiovascular magnetic reso-
nance (CMR): Consensus Panel report?,” European Heart Journal, vol.
25, no. 21, pp. 1940–1965, Nov. 2004.

[3] J. Schwitter et al., “MR-IMPACT II: Magnetic Resonance Imaging
for Myocardial Perfusion Assessment in Coronary artery disease
Trial: perfusion-cardiac magnetic resonance vs. single-photon emission
computed tomography for the detection of coronary artery disease: a
comparative multicentre, multivendor trial,” European Heart Journal,
vol. 34, no. 10, pp. 775–781, Mar. 2013.

[4] P. S. Douglas et al., “Outcomes of Anatomical versus Functional
Testing for Coronary Artery Disease,” N Engl J Med, vol. 372, no.
14, pp. 1291–1300, Apr. 2015.

[5] C. Petitjean et al., “Right ventricle segmentation from cardiac MRI: A
collation study,” Medical Image Analysis, vol. 19, no. 1, pp. 187–202,
Jan. 2015.

[6] V. Tavakoli and A. A. Amini, “A survey of shaped-based registration
and segmentation techniques for cardiac images,” Computer Vision
and Image Understanding, vol. 117, no. 9, pp. 966–989, Sep. 2013.

[7] M. H. Hesamian, W. Jia, X. He, and P. Kennedy, “Deep Learning
Techniques for Medical Image Segmentation: Achievements and Chal-
lenges,” J Digit Imaging, vol. 32, no. 4, pp. 582–596, Aug. 2019.

[8] D. Ciresan et al., ”Deep neural networks segment neuronal membranes
in electron microscopy images”, Adv. Neural Inf. Process. Syst., pp.
2843-2851, 2012.

[9] P. V. Tran, ”A fully convolutional neural network for car-
diac segmentation in short-axis MRI,” 2016, [online] Available:
https://arxiv.org/abs/1604.00494.

[10] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” in MICCAI 2015, vol.
9351, pp. 234–241.
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