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Abstract— Positron Emission Tomography (PET) is among
the most commonly used medical imaging modalities in clinical
practice, especially for oncological applications. In contrast
to conventional imaging modalities like X-ray Computed To-
mography (CT) or Magnetic Resonance Imaging (MRI), PET
retrieves in vivo information about biochemical processes rather
than just anatomical structures. However, physical limitations
and detector constraints lead to an order of magnitude lower
spatial resolution in PET images. In recent years, the use of
monolithic detector crystals has been investigated to overcome
some of the factors limiting spatial resolution. The key to
increasing PET systems’ resolution is to estimate the gamma-
ray interaction position in the detector as precisely as possible.

In this work, we evaluate a Convolutional Neural Network
(CNN) based reconstruction algorithm that predicts the gamma-
ray interaction position using light patterns recorded with
Silicon photomultipliers (SiPMs) on the crystal’s surfaces. The
algorithm is trained on data from a Monte Carlo Simulation
(MCS) that models a gamma point source and a detector con-
sisting of Lutetium–yttrium oxyorthosilicate (LYSO) crystals
and SiPMs added to five surfaces. The final Mean Absolute
Error (MAE) on the test dataset is 1.48 mm.

I. INTRODUCTION

Since its introduction in a clinical context in the 1970s,
PET performance has increased ten times in spatial resolution
and forty times in sensitivity [1]. Today, PET is one of
the most widely used medical imaging modalities due to its
ability to measure metabolic activity in a patient’s body.

However, PET systems’ spatial resolution is limited com-
pared to other medical imaging modalities like CT and MRI.
It is constrained by several degrading factors, such as the
distance that a positron travels before annihilating with an
electron, scattering of the emerging gamma-rays in the tissue,
and the detector’s resolution.

There has been a trend in pre-clinical PET research to-
wards using monolithic detector crystals instead of pixelated
ones to increase the spatial resolution in recent years. The
advantage of monolithic crystals is that the resolution is not
inherently limited by the pixel size but can be improved
with more advanced readout schemes and data processing
methods.

Wang et al. [2] developed a monolithic PET detector
system that can estimate gamma-ray interaction positions
with Neural Networks (NNs). One network was trained to
estimate the plane position and another to predict the Depth
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of Interaction (DOI). The input data were created with a sim-
plified readout scheme with signals from a Photomultiplier
Tube (PMT) on one side of the crystal.

Marcinkowski et al. [3] investigated a high-resolution
small-animal PET system based on a continuous crystal.
In this system, a LYSO crystal is coupled with a Digital
Photon Counter, and the gamma-ray interaction position is
determined using mean nearest neighbor positioning.

Tao et al. [4] compare four different neural network
architectures that estimate gamma-ray interaction positions
in monolithic crystals. Fully connected and convolutional
networks with regression and classification heads are trained
with mean detector response functions as input. The authors
note that deep learning methods reduce the memory cost
by a factor of one to two orders of magnitude compared to
searching-based methods.

The work by Sanaat and Zaidi [5] presents another ap-
proach to estimate the DOI in a monolithic crystal using a
NN. They trained a multilayer perceptron with data from a
MCS that outputs the 3D gamma-ray interaction position.
Notably, the proposed approach improves the spatial resolu-
tion of the PET system compared to analytical methods.

In this work, we want to predict the gamma-ray interaction
position inside a monolithic crystal as precisely as possible
using the light patterns recorded with SiPMs on the crystal’s
surfaces that emerge through scintillation. For the prediction,
a CNN based approach is used that takes the surface light
patterns as input and outputs the interaction point. We create
a dataset consisting of hundreds of thousands of light patterns
and corresponding interaction points with a MCS to train the
CNN. In the simulation, we model a detector made up of
LYSO crystals with SiPMs added to all surfaces except for
the front one.

II. METHODS

A. Geant4 Simulation of Gamma Point Source and LYSO
Detector

The MCS containing a gamma point source and a LYSO
detector is built with the Geant4 simulation toolkit [6], [7],
[8]. With Geant4, ”the passage of particles through matter”
can be simulated for a wide range of physics processes,
particles, and materials over a broad energy spectrum. A
Geant4 application program consists of several parts covering
all aspects of a simulation: detector construction, primary
particle generation, physics processes, detector response, data
generation, and visualization.
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1) Detector Construction: The detector is a 60 x 120 x
20 mm3 box-shaped volume consisting of three box-shaped
LYSO crystals with a volume of 60 x 40 x 20 mm3 each.
The crystals’ optical surfaces are created with Geant4’s
unified model and ground finish with a sigma alpha
value of 0.01 and a specular lobe constant of 1.0. The three
crystals are optically decoupled from each other through a
0.1 mm thick air gap between them. The crystal-air optical
border surfaces are created with Geant4’s unified model
and polishedbackpainted finish.

To all surfaces except the front one, where the gamma-rays
enter the crystal, SiPMs are added. To simulate the optical
coupling between crystals and SiPMs, a 0.10 mm thick
layer of optical grease and 0.31 mm thick glass plates are
inserted before a 1.0 mm thick silicon layer. The complete
detector system is placed in a surrounding volume made up
of G4 Galactic material. Fig. 1 shows a schematic of the
setup, and the optical properties of the simulated materials
are given in Table I.

TABLE I
OPTICAL PROPERTIES OF THE MATERIALS IN THE SIMULATION.

ENTRIES WITH AN ASTERISK ARE DEPENDENT ON PHOTON ENERGY.
THE VALUES FOR THE SCINTILLATION YIELD OF SILICON ARE TAKEN

FROM [9] AS FOUND IN [10].

LYSO Opt. Grease Glass Si

Density [g/cm3] 7.1 1.06 2.40 2.33
Refr. Index * 1.46 1.51 *
Scint. Yield [Photons/MeV] 40,000
Fast Time Const. [ns] 36
Resolution Scale 4.8
Fast Scint. Rise Time [ps] 50
Abs. Length [m] *

Fig. 1. Schematic of the detector setup viewed from the side and top.
The detector is made up of three LYSO crystals with SiPMs added to all
surfaces except for the front one. The position of the point source is chosen
randomly from the orange plane and the momentum direction is selected
randomly under the condition that the crystal is hit.

2) Primary Particle Generation: In the simulation, a
particle gun emits primary gamma particles with an energy

of 511 keV. To create a dataset with a large variety of
gamma-ray interaction positions in the crystal, the particle
gun’s position and momentum direction are randomized. The
position is randomly chosen from a surface parallel to the
detector’s front surface that has a distance of 30 mm to it.
The momentum direction is then randomly selected under
the condition that the crystal is always hit. The randomized
position and momentum direction are illustrated in Fig. 1.

3) Analysis: Geant4’s analysis manager is set up to save
the desired outputs of the simulation. In this work, these are
the interaction positions of the gamma-ray in the crystal and
the positions of the optical photons entering the silicon layer.

B. SiPM Simulation

The SiPM array simulated in this work is Hamamatsu’s
S13615-1050N-16 [11], whose properties are described in
Table II.

Except for the front surface, all of the detector’s surfaces
are entirely covered with SiPM arrays. They are simulated
with the following procedure that accounts for the dead space
between each SiPM array and between each single SiPM:

1) Create 2D histograms of optical photons entering the
silicon layer for each crystal surface covered with
SiPMs.

2) Split each histogram in 20 x 20 mm2 blocks.
3) Remove the border of each block such that its dimen-

sions equal the dimensions of the SiPM array.
4) Split the SiPM array block into 16 x 16 SiPM blocks.
5) Remove the border of each SiPM block to account for

the dead space between each SiPM.
6) Compute the output value of each SiPM by counting

the number of photons going through it and multiply-
ing that number by the photon detection efficiency of
the SiPM.

TABLE II
PROPERTIES OF THE SIMULATED SIPM ARRAY [11].

Channels 16 x 16

Photosensitive Area per Channel [mm2] 1.0 x 1.0
Dimensions [mm2] 19.25 x 19.25
Pixel Pitch [µm] 50
Pixels per Channel 396
Fill Factor [%] 74
Max. Photon Detection Efficiency [% at 450 nm] 40

C. Dataset Creation

The Geant4 simulation described in subsection II-A is run
in parallel to create the train and test datasets. Each simu-
lation runs one event, i.e. one primary gamma particle, and
creates one output file containing the gamma-ray interaction
positions and one containing the positions of the optical
photons entering the silicon layer. These output files are then
further processed to create the light patterns as described in
subsection II-B. Additionally, the light patterns are padded
such that they all have the same square shape. A training
dataset of 140,000 samples and a test dataset of 14,000
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samples are created in this manner. An example sample is
shown in Fig. 2.

Fig. 2. Example sample showing the light patterns recorded with the SiPMs
on all surfaces of the detector except the front one. The light patterns created
through the SiPM simulation are padded such that they all have the same
square shape. The green dot is the interaction position of the gamma-ray
inside the crystal projected onto each surface. As the interaction occured in
the middle crystal, almost no photons are recorded on the top and bottom
surfaces.

D. Interaction Position Prediction

The created dataset is used to train a CNN based recon-
struction network that predicts the gamma-ray interaction
position inside the crystal. The input to the network is the
light patterns recorded with SiPMs on the detector’s surface.
With these light pattern images, the network learns the non-
linear relationship between the images and the gamma-ray
interaction position.

1) Baseline Method: In addition to our deep learning
based approach, a simple centroiding based method is im-
plemented to serve as a baseline.

For every sample in the dataset, the following steps are
performed to determine the interaction position:

1) Compute the centroids of every light pattern.
2) Take the mean of the centroids of corresponding light

patterns (top-bottom, left-right) to compute XZ- and
YZ-centroids (not applicable for the back light pattern
as there is no corresponding front light pattern).

3) Take the mean of the corresponding dimensions of the
XY-, XZ-, and YZ-centroids to compute the X-, Y-,
and Z-centroid.

4) Stack the X-, Y-, and Z-centroid to create the predicted
XYZ-position.

The predicted position is then compared to the ground
truth value for every sample in the dataset.

2) Training Pipeline: PyTorch Lightning [12] is used
to implement the training pipeline. The code is organized
with subclasses of the LightningDataModule and the
LightningModule. With the LightningDataModule
subclass, the train and test datasets are loaded, the train
dataset is split into a train and a validation dataset,
and the PyTorch DataLoaders are set up. With the
LightningModule subclass, the network architecture,
loss function, and optimizer are initialized. Additionally, the
training, validation, and test steps are defined, including the
logging of the loss. Weights & Biases [13] is used to create
experiment sweeps and log results.

3) Experiment Setup: In this work, the trade-off between
the number of surfaces covered with SiPMs and interaction
point prediction performance is investigated. The parameters
given in Table III are used for every experiment run. The
experiments are performed on a machine with a NVIDIA
GeForce RTX 2080 Ti GPU. One run takes approximately
10 minutes.

TABLE III
PARAMETERS USED FOR EVERY EXPERIMENT RUN. THE NUMBER OF

INPUT CHANNELS C IS DETERMINED BY THE NUMBER OF SURFACES

WITH SIPMS.

Dataset Splits 110k train, 30k val, 14k test
Input Tensor Size Cx96x96
Network Architecture ResNet18 [14]
Loss Function Mean Absolute Error (MAE)
Optimizer Adam [15]
Learning Rate 3e-4
Batch Size 256
Epochs 20

III. RESULTS & DISCUSSION

A. Baseline

The centroiding based baseline algorithm described in
subsubsection II-D.1 reaches a MAE of 6.16 mm on the test
dataset.

This value serves as a baseline for the following experi-
ment that uses a deep learning based approach.

B. Number of Surfaces Covered in SiPMs

With this experiment, the trade-off between prediction
performance and the number of detector surfaces covered
with SiPMs used as input for the network is evaluated. The
runs are all performed using the parameters from Table III
with varying input channels corresponding to the choice of
surfaces used for the run. In total, there are 31 runs in
this experiment, as every possible combination of the five
surfaces is used. The test results of the runs are shown in
Table IV.

These results show that some surfaces encode significantly
more information compared to others. The back surface has
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the greatest predictive influence, improving performance by
470.76 % compared to the least predictive surface, the bottom
one. Besides, the back surface is also part of every other best
performing combination of light patterns.

Notably, the best result with a test MAE of 1.48 mm is
not achieved using all five possible surfaces but with only
the following three surfaces: back, left, and right. Adding
the bottom and top surface leads to worse performance as
those two surfaces seem to encode no additional information
about the interaction position. The optical decoupling of
the crystals can explain this performance decrease. If the
gamma-ray interaction occurs in the middle crystal, almost
no photons exit the top and bottom surfaces and thus, the top
and bottom light pattern images do not contain any valuable
information. If the interaction occurs in the top or bottom
crystal, then either the bottom or top light pattern encodes
no useful information.

TABLE IV
TEST RESULTS OF THE NUMBER OF INPUT-LIGHT-PATTERNS

EXPERIMENT. THE BEST PERFORMING COMBINATION FOR EVERY

NUMBER OF LIGHT PATTERNS IS SHOWN IN BOLD. THE RELATIVE

IMPROVEMENT IS COMPUTED BASED ON THE WORST RESULT. THE FIRST

TWO LETTERS OF EACH SURFACE NAME ARE USED TO ABBREVIATE THE

SURFACES: BA - BACK, TO - TOP, BO - BOTTOM, LE - LEFT, RI - RIGHT.

Surfaces Test MAE [mm] Rel. Improv. [%]

1 ba-le-ri 1.48 529.62
2 ba-to-bo-le-ri 1.52 526.79
3 ba-to-le-ri 1.55 525.30
4 ba-bo-le-ri 1.56 524.43
. . .
8 ba-to-ri 1.78 509.73
9 ba-le 1.80 508.36
10 ba-to-bo-ri 1.80 508.23
. . .
19 ba-to 2.25 477.88
20 ba 2.35 470.76
21 to-bo-ri 2.85 437.40
. . .
31 bo 9.33 0.00

IV. CONCLUSIONS

In this work, the gamma-ray interaction position in a
monolithic detector system is reconstructed with a CNN
using the light patterns that emerge on the detector’s surface.
Our experiments showed that some light patterns encode
significantly more information for the network compared to
others. Further experiments will be performed by evaluating
a varying number of crystals per side and different optical
(de-)coupling methods. These results will directly influence
the design of the prototype system consisting of two of the
described detectors.
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