
  

  

Abstract—Type 1 diabetes (T1D) is a chronic life-threatening 
metabolic condition which needs to be accurately and 
continuously managed with care by multiple daily exogenous 
insulin injections, frequent blood glucose concentration 
monitoring, ad-hoc diet, and physical activity. In the last 
decades, new technologies, such as continuous glucose 
monitoring sensors, eased the burden for T1D patients and 
opened new therapy perspectives by fostering the development 
of decision support systems (DSS). A DSS for T1D should be able 
to provide patients with advice aimed at improving metabolic 
control and reducing the number of actions related to therapy 
handling. Major challenges are the vast intra-/inter-subject 
physiological variability and the many factors that impact 
glucose metabolism. The present work illustrates a new DSS for 
T1D management. The algorithmic core includes a module for 
optimal, personalized, insulin dose calculation and a module that 
triggers the assumption of rescue carbohydrates to 
avoid/mitigate impending hypoglycemic events. The algorithms 
are integrated within a prototype communication platform that 
comprises a mobile app, a real-time telemonitoring interface, 
and a cloud server to safely store patients’ data. Tests made in 
silico show that the use of the new algorithms lead to metabolic 
control indices significantly better than those obtained by the 
standard care for T1D. The preliminary test of the prototype 
platform suggests that it is robust, performant, and well-
accepted by both patients and clinicians. Future work will focus 
on the refinement of the communication platform and the design 
of a clinical trial to assess the system effectiveness in real-life 
conditions. 

Clinical Relevance— The presented DSS is a promising tool to 
facilitate T1D daily management and improve therapy efficacy. 

I. INTRODUCTION 

Type 1 diabetes (T1D) is a chronic condition characterized 
by the autoimmune destruction of the pancreatic beta-cells, 
which are responsible for endogenous insulin secretion and 
production [1]. This lack of insulin causes blood glucose (BG) 
concentration to exceed the safe range thus requiring patients 
to take numerous daily actions to keep it under control 
avoiding adverse hypoglycemic (BG < 70 mg/dl) and 
hyperglycemic (BG > 180 mg/dl) events.  Clearly, 
management of T1D is a particularly delicate and difficult 
task due to the many factors that impact BG concentration 
such as diet, physical activity, and patients’ habits. For this 
reason, groundbreaking technologies, such as continuous 
glucose monitoring (CGM) devices, which allows monitoring 
BG in real-time [2], and continuous subcutaneous insulin 
infusion pumps (CSII) [3], have been recently introduced to 
help people with T1D. These technologies, and the 
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consequent availability of large amounts of data collected by 
both CGMs and CSIIs, enabled the research community to 
develop new smart tools able to provide patients with 
proactive and personalized suggestions and advice to improve 
BG control [4]. Specifically, one main objective is the 
development of advanced decision support systems (DSS) 
[5], i.e., composite automated tools that commonly integrate 
multiple modules, spanning from insulin bolus calculators to 
BG forecasting algorithm able to generate smart alarms. 
However, due to the complex nonlinear relationships which 
characterize the glucose-insulin regulation system, and the 
peculiar inter-/intra-subject physiological variability, just to 
mention a few, the development of a fully operational DSS is 
still an open challenge.  

The aim of the present work is to illustrate a novel DSS, for 
sake of clarity from now on referred to as Padova Decision 
Support System (PDSS), based on our recently published 
algorithms for personalized insulin dosing [6], and 
hypoglycemic prevention [7]. As summarized in Fig. 1, the 
PDSS is composed of two main entities: a set of modules 
implementing the algorithmic core of the system, and a 
communication platform, named IMPACT [8], where PDSS 
is integrated into. The PDSS modules are currently two: i) an 
insulin bolus calculator, based on linear regression, to provide 
optimal and personalized insulin dosing at mealtime, and ii) 
an algorithm that targets hypoglycemia by suggesting the 
assumption of rescue carbohydrates in a preventive manner. 
The IMPACT platform, totally developed in house, is 
composed of three elements: a mobile app, which runs the 
PDSS modules, a cloud server, that safely stores patients’ 
data, and a real-time monitoring interface, that enables 
clinicians to inspect the status of each patient remotely. These 
three elements exchange data between each other via custom 
RESTful APIs. 

In Section II, we illustrate the PDSS algorithmic core as 
well as its in-silico evaluation. Details on the IMPACT 
platform and its implementation are described in Section III. 
Section IV draws some conclusions and discuss the next steps 
to improve and eventually validate PDSS. 

II. THE PDSS ALGORITHMIC CORE 

A. The Insulin Bolus Calculator Module 
The meal insulin bolus (MIB) calculator module is based 

on a linear regression model recently proposed by Noaro et al. 
[6], to which the reader is referred for more methodological  
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details and deeper evaluation. The model was developed 
using a simulated dataset, generated through the UVa/Padova 
T1D Simulator [9], including multiple single-meal scenarios 
having different meal conditions in terms of BG concentration 
(GC) and BG derivative (Gder). Model features include 
information on the prandial condition, i.e., GC, Gder, the 
carbohydrate (CHO) intake , and the insulin on board (IOB); 
the physiology of the subject, i.e., body weight (BW); the 
therapy parameters, i.e., the correction factor (CF), the 
insulin-to-carbohydrate ratio (CR), the basal insulin (Ib), and 
the target BG (GT); and the baseline insulin dose provided by 
the standard formula (SF) for MIB dosing commonly used in 
clinical practice [10], hereafter labeled as MIBSF. Moreover, 
due to the nonlinear nature of the problem, we extended the 
feature set by also adding the quadratic value of each feature 
thus making the model of choice linear in structure but not at 
the feature level. The generated dataset was properly divided 
into training and test set, and then normalized. As a linear 
regression model of choice, we selected a least absolute 
shrinkage and selection operator (LASSO), since able to 
naturally perform both automatic feature selection and 
regularization during the training phase, thus reducing the risk 
of overfitting. The resulting formula for MIB calculation 
based on LASSO (MIBLASSO) is: 
 
MIBLASSO = 4.603 – 0.198 CR + 0.789 Gder + 0.234 CHO + 
2.671 MIBSF - 0.224 BW2 + 0.403 GT2 – 0.020 GC2 
 
 

MIBLASSO use was evaluated on the test set scenarios in 
single meal noise-free simulated experiments, in which the 
obtained MIB was applied as mealtime insulin amount. A 
representative example is reported in the upper panel of Fig. 
2, where two simulated postprandial BG curves resulting from 
the usage of SF and LASSO are shown. Compared to MIBSF 
use, the application of MIBLASSO resulted in tighter glycemic 
control, and avoided the occurrence of postprandial 
hypoglycemia. Results in the test set were quantified by 
computing the percentage of time spent above the target 

glycemic range (TAR), below the target range (TBR), and 
within the target range (TIR) over the 6-hour postprandial 
time window. In the lower panel of Fig. 2, the difference 
between the metric distributions of MIBLASSO and MIBSF (i.e., 
ΔTAR, ΔTBR, and ΔTIR) are reported. The proposed model 
led to a general improvement in terms of ΔTBR and ΔTIR, 
being the two distributions concentrated below zero (reaching 
a 25th percentile of about -10%), and above zero (with a 
median of 20%) respectively, without affecting the ΔTAR. 

 

 

B. Hypoglycemia prevention module 
The hypoglycemia prevention module is based on a 

heuristic approach proposed by Camerlingo et al. [7], to 
which we refer the reader for details. The approach suggests 
the assumption of small preventive amounts of fast-acting 
CHO by leveraging two risk measures: the static risk (SR) 
[11], and the dynamic risk (DR) [12]. While SR converts 
every BG reading into a specific penalty score, the DR also 
considers its derivative, Gder, assigning a higher risk to 

 
Fig. 1: Overview of PDSS. To the left, the PDSS algorithmic core. To the right the IMPACT platform where the PDSS algorithms are implemented 
upon. 

 
Fig. 2: Upper panel: two representative simulated BG curves during 
the 6-hour postprandial time window are shown for MIBSF and 
MIBLASSO. Dashed lines indicate the target glycemic range. Lower 
panel: distributions of ΔTAR, ΔTBR and ΔTIR between MIBLASSO 
and MIBSF. 
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situations in which BG concentration is low and Gder is 
negative. 
Every BG reading, SR and DR are used to distinguish the 

severity of the forthcoming hypoglycemic event and then to 
suggest a risk-related CHO amount, according to the 
following three sequential steps: 
1. Classification of the forthcoming hypoglycemic event: 

• If DR is 0 and Gder is lower than or equal to -1 
mg/dL/min, the algorithm foresees a rapid descent in 
hypoglycemia. 

• If DR is 0 and Gder ranges in (0, -1) mg/dL/min, the 
algorithm foresees a slow descent in hypoglycemia. 

2. Suggestion of hypotreatments: 
• In case of rapid descent, the algorithm suggests the 

assumption of a hypotreatment of 20 g. 
• In case of slow descent, the algorithm does not 

suggest any hypotreatment. 
3. Post-classification actions: 

• If DR is lower than or equal to the value of SR 
corresponding to BG equal to 70 mg/dL, it is 
decreasing, and 15 min are passed since the last 
hypotreatment, the algorithm suggests the 
assumption of an additional hypotreatment of 15 g or 
20 g in case of slow or rapid descent in 
hypoglycemia, respectively. The 70 mg/dL threshold 
and the hypotreatment doses are defined 
experimentally as described in [7].  

• If the DR is greater than 0, the algorithm restarts 
from step 1.  

The algorithm was assessed using the UVa/Padova T1D 
Simulator [9] and compared against the American Diabetes 
Association (ADA) guideline, i.e., the standard strategy for 
hypoglycemia prevention currently used in clinical practice 
[13], which suggests the assumption of a hypotreatment of 15 
g every 15 minutes while in hypoglycemia. As for the 
previous module, performances were quantified in terms of 
ΔTAR, ΔTBR, and ΔTIR. The upper panel of Fig. 3 shows a 
comparison between the new algorithm and the ADA 
guideline, for a representative subject. Using the ADA 
guideline, two hypotreatments occur to mitigate the 
hypoglycemic event when BG is already below 70, thus not 
preventing the relative hypoglycemic event. Instead, the 
proposed algorithm allows avoiding hypoglycemia with only 
one preventive hypotreatment. The distributions of ΔTAR, 
ΔTBR, and ΔTIR are reported in the lower panel of Fig. 3. 
The proposed algorithm greatly reduces ΔTBR (3.52% on 
average) without any impact on the ΔTAR, thus increasing 
the ΔTIR (3.75%, on average). As a further note, the proposed 
algorithm suggests, on average, less hypotreatments than the 
ADA guidelines (1 vs. 2 per day). 

 

III. THE IMPACT COMMUNICATION PLATFORM 
The communication platform of PDSS is based on 

IMPACT, an integrated platform for data gathering developed 
by Cappon et al. [8]. The platform consists of three main 
elements: a mobile app, a cloud server, and a telemonitoring 
interface. The mobile app has been built in Flutter [14] and 
records user data by allowing to manually insert meal intakes, 
insulin administrations events and to record automatically 
CGM measurements from Dexcom Inc. (San Diego, CA, 
USA) CGM devices, and health vitals, i.e., step count, sleep, 
and heart rate, from Apple Watch (Cupertino, CA, USA). The 
mobile app was designed following user-centered 
methodologies. This was possible by deeply involving both 
patients and clinicians throughout the whole process ensuring 
that their needs and expected outcomes are fully covered in 
the final solution. The cloud server implements ad-hoc 
RESTful APIs written in PHP to store patient data collected 
using the mobile app and to transmit them to the 
telemonitoring interface. The latter is accessible by clinicians 
through the web and allows to monitor in real-time each 
patient using PDSS. Fig 4. shows a representative snapshot of 
the telemonitoring interface. While, in the upper panel, patient 
data are shown for a specific day of monitoring, in the lower 
panel, multiple statistics about patient’s glucose control for 
that day, e.g., number of hypo-/hyperglycemic events, 
average glucose level, and the glucose variation, are 
computed to help clinicians in analyzing specific portions of 
data. Of note, the PDSS platform complies with the General 
Data Protection Regulations (GDPR) [15] to guarantee data 

 
Fig. 3. Upper panel: BG curves of a representative virtual subject with 
the ADA guideline (blue) and the new algorithm (red). Dots represent 
the BG value at hypotreatment times. Lower panel: distributions of 
ΔTAR, ΔTBR and ΔTIR between ADA guideline and the proposed 
algorithm. 
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safety and protect the final users’ fundamental rights in this 
term.  

The platform functionalities has been tested within our 
facilities in a small beta session of 20 days involving one 
patient with T1D. This short testing session allowed to prove 
the usability of the platform and solve bugs that would come 
out during long-term use of the application. The general self-
reported feedback received by both patient and clinicians is 
positive. The usability appeared good, and all shown statistics 
allowed the users to improve data readability. The mobile app 
has been reported to be intuitive and user-friendly. 

IV. CONCLUSION AND FUTURE STEPS  
A DSS can be of great help for T1D patients in managing 

the disease. In this work, we presented a new system, the 
PDSS, which, to date, comprises two state-of-the-art 
algorithms that have been proven to outperform, in silico, the 
current T1D standard of care. The algorithms have been 
integrated into a novel communication platform that allows to 
safely store data and to monitor patients in real-time. 

Even if PDSS is potentially ready to be tested in a dedicated 
clinical trial, further work is still necessary in order to refine 
the system. This will start by implementing multiple 
constraints, specifically targeting the insulin bolus calculator 
module, in order to avoid potentially dangerous insulin 
overdosing, thus guaranteeing patient safety. In addition, the 
hypotreatment dose could be adjusted to the subjects’ 
physiologic features, in order to optimize its effect. Once 
refined, PDSS will require an additional in silico assessment 
on more challenging scenarios, e.g. multiple meal 
experiments to quantify its impact in the medium-/long-term. 
Moreover, PDSS will be evaluated using real data, by 
leveraging the ReplayBG framework [16], i.e., a recently 
proposed in-silico tool to assess new therapy guidelines for 
T1D management on retrospective data. In parallel, the 
validation will focus on an extensive comparison of PDSS 
against other state-of-the-art DSS [5] to identify possible 
margins of improvement. 

Finally, we will investigate the expansion of PDSS 
features. In this context, work currently undergoing in our 
group focuses on the possibility of integrating into PDSS a 
new module able to target hyperglycemia by recommending 
the administration of corrective insulin boluses [17]. 
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Fig. 4. Upper panel: Example of data collected in a representative 
subject for a specific day as presented in the telemonitoring interface. 
Glucose data (dotted trace) coloring depends on value to highlight the 
different glycemic zones.  CHO intakes and insulin boluses are in yellow 
and blue square dots, respectively. Patient’s steps are reported using 
violet bars. Sleep interval is denoted with a shaded blue area. Physical 
activity is highlighted with a shaded red area. Lower panel: glucose 
control statistics of the specific portion of data. 
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