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Abstract— Intracranial pressure (ICP) pulse waveform,
i.e., the shape of the ICP signal over a single cardiac cycle,
is regarded as a potential source of information about
intracranial compliance. In this study we aimed to compare
the results of automatic classification of ICP pulse shapes on a
scale from normal to pathological with other ICP pulse–derived
metrics. Additionally, identification of artifacts was performed
simultaneously with pulse classification to assess the effect of
artifact removal on the results. Data from 35 traumatic brain
injury (TBI) patients were analyzed retrospectively in terms of
dominant waveform shape, mean ICP, mean amplitude of ICP
(AmpICP), mean index of compensatory reserve (RAP index),
and their association with the patient’s clinical outcome. Our
results show that patients with poor outcome exhibit more
pathological waveform shape than patients with good outcome.
More pathological ICP pulse shape is associated with higher
mean ICP, mean AmpICP, and RAP.

Clinical relevance— In the clinical setting, ICP pulse wave-
form analysis could potentially be used to complement the
commonly monitored mean ICP and improve the assessment
of intracranial compliance in TBI patients. Artifact removal
from the ICP signal could reduce the frequency of false positive
detection of clinically adverse events.

I. INTRODUCTION

Traumatic brain injury (TBI) is considered an important
public health concern because of its high incidence and
significant socioeconomic costs [1]. In the clinical setting,
monitoring of mean intracranial pressure (ICP) is often used
in the management of TBI patients due to the association
between increases in ICP and higher mortality and worse
outcome [2]. However, pressure (P) and volume (V) in the
intracranial space are nonlinearly related (mathematically
modelled as an exponential P-V curve), and a reduction in
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brain compliance (i.e., the cerebrospinal system’s ability to
compensate changes in volume without potentially threaten-
ing increases in ICP) may occur before a rise in mean ICP
is detected [3].

Various studies have been conducted to develop tools
for the assessment of intracranial compliance. A number of
such studies included the analysis of ICP pulse waveform,
i.e., the ICP signal over a single cardiac cycle. Notably,
there have been attempts to derive that information from
changes in the amplitude of the ICP pulse (AmpICP) and
its relationship with changes in the mean value [4], [5] or
from changes in the configuration of peaks and notches of
ICP pulse contour [6], [7]. The RAP index [5], which is
the correlation coefficient between changes in mean ICP
and AmpICP, is a clinically accepted method of assessing
cerebral compensatory reserve that provides an estimation
of the patient’s position along the P-V curve. However, peak
detection methods proposed so far are yet to gain widespread
clinical application. More recently, a different approach was
suggested, which is based on classification of different shapes
of the ICP pulse waveform using a neural network [8]
instead of relying on the results of peak identification. In this
work we aimed to compare the results of pulse waveform
classification using a previously developed deep learning
model with other metrics used to describe TBI patients and
to assess the possible relationship between ICP pulse type
and the patients’ outcome.

II. MATERIALS AND METHODS
A. Data collection

This study was performed as a retrospective single-center
trial at Wroclaw University Hospital (Wroclaw, Poland) with
approval from the local Ethics Committee (approval no. KB-
624/2014) and in adherence to the Declaration of Helsinki.
35 patients suffering from TBI were selected for analysis.
All patients were treated according to guidelines applicable at
the time of admission [9]. The study group was homogenous
with regard to severity of the injury and treatment protocol.
The patients’ condition was assessed using the Glasgow
Coma Scale (GCS), Marshall scale, and Rotterdam scale. The
patients’ outcome was assessed using the Glasgow Outcome
Scale (GOS) at 3 months after discharge from the hospital,
with poor outcome represented by scores I–III and good
outcome by scores IV–V.

ICP was measured invasively using an intraparenchymal
sensor (Codman MicroSensor ICP Transducer, Codman &
Shurtleff, MA, USA) inserted into the frontal cortex. The
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signal was recorded with sampling frequency of 200 Hz us-
ing ICM+ software (Cambridge Enterprise Ltd, Cambridge,
UK). The patients were monitored continuously, starting in
day 1 or day 2 after admission to the hospital, depending on
the date of surgery. On average, the patients were monitored
for 5 ± 3 days.

B. Signal analysis and ICP pulse waveform classification

All analyses were performed using programs custom writ-
ten in Python 3.8 with PyTorch package. A residual neural
network (ResNet) model using 1-D vector of signal samples
(standardized to an interval between 0 and 1 and resampled
to uniform length of 180 samples) was trained to classify
ICP pulse waveforms into four morphological classes: 1–
normal, 2 – possibly pathological, 3 – likely pathological, 4
– pathological, reflecting the changes in the configuration
and visibility of characteristic peaks P1, P2, and P3 of
the waveform (Fig. 1) [8]. An additional class (A+E) was
introduced to identify invalid pulses in the signal, such as
artifacts or errors in pulse onset detection. Pulse detection
was performed using modified Scholkmann algorithm [10].
The model was trained using 23252 waveforms (divided into
training and validation datasets of 17011 and 6241 pulses,
respectively) randomly selected from full recordings of TBI
patients and manually classified by an expert researcher. All
waveforms from the same patient were assigned to only one
of the datasets to prevent correlation between datasets that
could limit the model’s generalization ability.

The model was then tested in an independent dataset
of 650 pulses extracted from 11 aneurysmal subarachnoid
hemorrhage patients and manually classified by a panel of
three experts (who showed significant agreement as tested
by Fleiss kappa test, κ=0.700 (95% CI: 0.672 to 0.728),
p < 0.001) to ensure its applicability to patient cohorts
with different data distributions. In cases with waveform
type at the border between two classes two labels were
allowed, and during assessment of classification accuracy the
label produced by the model was considered correct if it
matched either of the two. A detailed description of model
development and evaluation methodology is presented in our
earlier paper [11].

Classification results were obtained for all pulses in the full
recordings of TBI patients using the ResNet model with each
patient characterized by dominant pulse type (i.e., the pulse
type occurring most frequently in the whole recording with
pulses classified as artifacts excluded from analysis). The
long-term recordings were also used to obtain RAP index [5]
with AmpICP calculated as the amplitude of the fundamental
component of the ICP signal in range 0.6–1.8 Hz using Fast
Fourier Transform. The interpretation of the RAP index is as
follows: values around 0 indicate good compensatory reserve
whereas values increasing to +1 indicate poor compensatory
reserve; negative values are associated with cessation of
blood flow due to the collapse of cerebral arterial bed at very
high ICP [12]. Mean ICP and mean AmpICP were calculated
in 10-second-long windows and the correlation coefficient
between them was calculated in 5-minute-long windows

shifted every 10 seconds. The calculations were performed
for each raw recording and for modified recordings where
the pulses identified by the model as artifacts were removed.
Finally, episodes of mean ICP exceeding 20 mm Hg and
episodes of RAP exceeding 0.6 (with minimum length of
each episode no less than 5 minutes) were identified in each
recording before and after artifact removal. The thresholds
reflect values used in clinical practice to identify intracranial
hypertension [9] and reduced compensatory reserve [13],
respectively. Total duration of all identified episodes was
analyzed as well as the number of individual episodes and
mean duration of a single episode.

Fig. 1. Illustrative examples of ICP pulse waveform shapes in each class:
a) 1 – normal, b) 2 – possibly pathological, c) 3 – likely pathological, d) 4
– pathological, e) A+E – artifact or error.

C. Statistical analysis

Statistical analysis was performed using Statistica software
(v13.1, Tibco, Palo Alto, CA, USA). Statistical significance
level of 0.05 was assumed in all analyses. Data distri-
butions were tested for normality using the Kolmogorov-
Smirnov test with Lillefors correction. Difference between
two independent outcome groups was assessed using Mann-
Whitney U test and difference between metrics derived from
recordings before and after artifact removal (i.e., dependent
variables) using Wilcoxon singed rank test. The Fisher-
Freeman-Halton exact test of independence was used to
determine the association between two categorical variables
(outcome vs. dominant pulse waveform type) with 2x4
contingency table, where the effect size was assessed using
V Cramer’s coefficient. The relationships between pulse type
and mean ICP, mean AmpICP, and mean RAP averaged
over the whole recording were calculated using multiple
linear or linearized regression analysis with subjects treated
as categorical factors using dummy variables (with respect
to the inter-subject variability) and using partial coefficient
(Rp) between analyzed variables. All results are presented as
median ± interquartile range unless otherwise indicated.

III. RESULTS

A. Patient characteristics

The study group consisted of 26 men and 9 women with
median age of 38 ± 29 years. All patients had comparable
GCS score with median 6 ± 4. Detailed patient characteris-
tics are presented in Table I.
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TABLE I
PATIENT CHARACTERISTICS

Clinical feature Number of patients / Value
total group n = 35 (100%)

GCS on admission n (%) 3-8: 30 (86%), 9-12: 3 (8%),
13-15: 2 (6%)

Marshall score median ± IQR 3 ± 3

Rotterdam score median ± IQR 4 ± 1

30-days mortality n (%) 4 (10%)

GOS (3 months) n (%) I-III: 20 (57%), IV-V: 15 (43%)

B. Classification results

The ResNet model achieved classification accuracy of 95%
in the validation dataset and 81% in the independent test
dataset. Detailed scores for each pulse type are presented in
Table II.

TABLE II
RESNET MODEL PERFORMANCE

Validation dataset
n = 6241

Test dataset
n = 650

Pulse type Precision Recall Precision Recall

1 0.97 0.96 0.86 0.93

2 0.90 0.94 0.71 0.92

3 0.89 0.87 0.71 0.95

4 0.85 0.91 0.84 0.57

A+E 0.99 0.92 0.98 0.46

C. Relationship between outcome, ICP pulse type, and other
metrics

There were no statistically significant differences in mean
ICP, mean AmpICP, or mean RAP between good and poor
outcome groups (see Table III). Dominant ICP pulse type was
significantly lower (Z = 2.93, p = 0.003) in the good outcome
group (1.0 ± 1.0) compared to the poor outcome group
(2.0 ± 2.0). Additionally, there was a significant association
between ICP pulse type and the following parameters: mean
ICP (Rp = 0.63, p < 0.001), mean AmpICP (Rp = 0.61, p <
0.001), and mean RAP (Rp = 0.26, p = 0.004), as presented
in Fig. 2.

Dominant ICP pulse type (see Fig. 3) was significantly
associated with outcome: χ2(3) = 10.11, p = 0.011, with V
Cramer’s coefficient of 0.56 indicating a strong effect of this
relationship. Patients in the good outcome group frequently
exhibited dominant ICP pulse type 1 (73.3% of patients)
and rarely types 3 or 4 (7.3% and 0.0%, respectively). On
the other hand, a significant number of patients with poor
outcome exhibited pulse types 3 (15.0%) and 4 (30.0%).

TABLE III
MEAN ICP, AMPICP, RAP INDEX AND DOMINANT ICP PULSE TYPE FOR

PATIENTS WITH POOR AND GOOD OUTCOME. NS - RESULT NOT

STATISTICALLY SIGNIFICANT

GOS after 3 months Poor outcome
n = 20

Good outcome
n = 15 p

ICP [mm Hg] 13.88 ± 5.69 12.31 ± 4.52 ns

AmpICP [mm Hg] 1.15 ± 0.74 0.87 ± 0.54 ns

RAP [a.u.] 0.32 ± 0.23 0.46 ± 0.27 ns

Dominant pulse type 2.0 ± 2.0 1.0 ± 1.0 0.003

Fig. 2. The relationship between dominant ICP pulse type and mean ICP
(left), mean AmpICP (middle), and RAP index (right).

D. Effect of artifact removal

For episodes of RAP > 0.6, artifact removal resulted in a
statistically significant decrease in the total duration of the
episodes (from 29.7 ± 37.6 hours to 25.3 ± 38.2 hours, p <<
0.001) and in the number of individual episodes (from 141
± 135 to 125 ± 156, p < 0.001). For episodes of intracranial
hypertension (ICP > 20 mm Hg), artifact removal resulted
in a decrease in the total duration of the episodes (from 174
± 804 minutes to 160 ± 750 minutes, p = 0.006).

IV. DISCUSSION

In this work we aimed to use a deep learning model
to classify different shapes of ICP pulse waveforms and
compare them with other ICP pulse–derived indices in order
to further explore the meaning of ICP pulse morphology.

Our results show that in TBI patients dominant ICP pulse
type is associated with the patients’ outcome. Patients in
the good outcome group more frequently exhibit normal
waveforms (type 1) with dominant peak P1. In the poor
outcome group the number of normal waveforms decreases in
favor of pathologically changed pulses, particularly rounded
pulses with no identifiable peaks (type 4). In the clinical
setting, ICP–guided management mostly relies on a set
threshold for mean ICP above which therapeutic interven-
tions should be introduced [15]. The application of a general

548



Fig. 3. The interaction between dominant ICP pulse type and the number
of patients with poor or good outcome.

threshold in all TBI patients remains controversial [16], and
attention has been called to the fact that the relationship
between the state of the craniospinal system and mean ICP
is not straightforward [3]. Accordingly, our results show that
despite comparable mean ICP, the poor and good outcome
groups show differences in dominant pulse type, and pulse
type is the only parameter whose changes reach statistical
significance when compared against outcome. Furthermore,
ICP pulse types are significantly correlated with both ICP
and AmpICP, reflecting the trends expressed by the pressure–
volume and amplitude–pressure curves. Statistically signifi-
cant but weak correlation between ICP pulse shape and RAP
index may be explained by their different interpretation, as
ICP pulse shape is more related to intracranial compliance
while RAP provides information on the patient’s position on
the P-V curve. We also found that identification of artifacts
simultaneously with the classification of valid pulses changes
the total duration of detected episodes of increased ICP and
RAP, which is in line with previous studies highlighting the
role of artifacts in generating false alarms in the clinical
setting [17].

Presented observations are based on the results of a pre-
liminary study conducted in a small patient cohort and with
a simple neural network model. Performance of the model
can potentially be further improved by providing a more
balanced training and validation dataset or by introducing
modifications to the classification criteria which in their
current form were derived from patients with a different type
of intracranial pathology.

V. CONCLUSION

Analysis of brain compliance by means of automatic ICP
pulse shape classification is a promising approach to con-
tinuous monitoring of the state of the compensatory reserve
that could be used in patients with intracranial pathologies
alongside standard mean ICP measurement and improve the
assessment of the state of the intracranial space. Results
of this study suggest an association between dominant ICP
waveform type and the clinical outcome of TBI patients.
Clinical significance of proposed approach should be con-
firmed in a larger set of patients.
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