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Abstract—Central blood pressure is a vital signal that pro-
vides relevant physiological information about cardiovascular
diseases risk factors. The standard clinical protocols for mea-
suring these signals are challenging due to their invasive nature.
This makes the estimation-based methods more convenient,
however, they are usually not accurate as they fail to capture
some important features of the central pressure waveforms.
In this paper, we propose a novel data-driven approach that
combines machine learning tools and cross-relation-based blind
estimation methods to reconstruct the aortic blood pressure
waves from the distorted peripheral pressure signals. Due to
the lack of large real datasets, in this study, we utilize virtual
pulse waves in-silico databases to train the machine learning
models. The performance of the proposed approach is compared
with the pure machine learning-based model and the cross-
relation-based blind estimation approach. In both cases, the
hybrid approach shows promising results as the root-mean-
squared error has been reduced by 25% with regards to the
pure machine learning method and by 40% compared to the
cross-relation approach.

Keywords—Central blood pressure, Peripheral blood pres-
sure, Multi-channel blind system identification, Machine learn-
ing, Sparse representation.

I. INTRODUCTION

One of the vital signals that carry medical information
about cardiovascular system conditions is the central blood
pressure signals [1], [2]. The clinical protocols of measuring
this signal are usually burdensome as they can only be
measured invasively with a catheter. Accordingly, several
studies have been devoted to estimating the central aortic
pressure from peripheral pulse waves (PWs) that are easy to
collect noninvasively. However, peripheral pressure signals
are considered distorted versions of the central one, and most
of the important features are lost as the signal propagates [3].

Modeling a transfer function (TF) that characterizes the
arterial path between the central and peripheral pressure
signals is one of the most common techniques to estimate
the central pressure signals. In this context, researchers have
defined two types of TFs; generalized [3]–[5] and individual
TFs [6]–[11]. Generalized TFs are obtained by averaging
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multiple individual TFs. Although this type of TFs is popular
due to the low complex solutions it provides, these TFs
are usually not accurate because the variability between
subjects in some physical parameters, such as the stiffness of
the arteries, cannot be neglected. Conversely, more accurate
results can be obtained by using individual TFs, which
are based on individual physical parameters, by collecting
multiple measurements from the subjects, some of which are
not easy to obtain.

To avoid collecting these complicated measurements, the
so-called multi-channel blind system identification (MBSI)
techniques have been proposed. The main goal of these
techniques is to reconstruct a common input from multiple
observed signals. By adopting MBSI to estimate the aortic
blood pressure, the central waveform can be reconstructed
using only two peripheral waves employing either linear,
[12]–[14] or nonlinear approaches [15]. However, TF- and
MBSI-based methods usually fail to catch specific features
of the central pulse wave, such as the dicrotic notch.

More recently, machine-learning (ML) methods have been
proposed to estimate the central pressure from different
physiological signals such as photoplethysmogram (PPG) or
electroencephalogram (EEG) signals [16]–[20]. These works
focus mainly on estimating some features, such as the systolic
and diastolic pressure values, rather than reconstructing the
whole central pressure waveforms. Generally, the main issue
in applying the ML-based estimation technique is the lack
of large databases to train the models. In this case, re-
searchers utilize in-silico databases generated using advanced
pre-validated physical models [21], [22]. However, these
virtual databases are usually not diverse enough and do not
cover all the hemodynamic variabilities. Conclusively, it is
extremely difficult to generate a universal model using only
ML techniques.

In this paper, we propose a novel hybrid approach to
estimate the central pressure signal taking advantage of both
learning-based methods and MBSI techniques. The main
contribution of this paper is integrating the ML models with
the MBSI approach to avoid the underfitting that might be
caused by training the ML models with databases that are not
diverse enough. On top of that, the uniqueness of the aortic
pressure waves is exploited to reconstruct the target central
pressure pulse wave as a sparse combination of a limited
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Fig. 1: System architecture comprising three stages: In the first stage, a
minimum of two ML models are used to construct the central pressure

waveform given some features {f1, f2}. Subsequently, the outputs of these
model {S1, S2} are fed to a CR model block with co-prime peripheral

blood pressure signals, {x1, x2}, to estimate the peripheral channels, {h1,
h2}, that relate the central pressure to the peripheral pressure signals.

Finally, the estimated central aortic pressure waveform ŝ, is reconstructed
using a sparse dictionary representation technique.

number of bases. This combination is shown to provide a
better estimate of the central pressure signals.

The remainder of the paper is organized as follows. Sec-
tion II describes the proposed method. Section III presents
some results and discusses the performance of the proposed
approach. Finally, Section IV concludes the paper with future
work recommendations.

II. METHODS AND MATERIALS

The proposed system consists of three stages as shown in
Fig. 1. In the first stage, a minimum of two ML models
are used to estimate the central pressure waveform given
some features {f1, f2}. The outputs of these models {S1,
S2} are fed to a cross-relation (CR) model along with
co-prime peripheral blood pressure signals, {x1, x2} to
estimate the peripheral channels, {h1, h2}, that relate the
central pressure to the peripheral ones. Finally, the estimated
central aortic pressure waveform ŝ, is reconstructed using a
sparse dictionary representation technique. In the following
subsection, we give a detailed description of each of these
stages.

A. Machine learning model

For simplicity and without loss of generality, we assume
that we have two ML models; each predicts the central
pressure waveform given a specific set of features, such as
the time or frequency domain measurements of peripheral
pressure signals or their derivatives. The ML models are
distinct in a way that they generate different estimates. The
training of the ML models is performed independently of the
subsequent phases.

B. Arterial Channel estimation

The next step is to estimate the arterial channels that relate
the central pressure with each peripheral pressure signal. We
assume that the ML models produce valid estimates of the

central pressure signal. Assuming that the arterial system is
linear-time invariant (LTI), we can express the relationship
between the estimated central and the peripheral pressure
signals as

xi[n] = sj [n] ∗ hi[n], i, j = 1, 2, (1)

where s1[n] and s2[n] are two discrete sequences each of
length N representing the ML estimates, x1[n] and x2[n]
are the measured peripheral signals, h1[n] and h2[n] are the
arterial channels each of length L, and ∗ denotes the linear
convolution.

Equation (1) can be written an a vector-matrix format as

xi = Sjhi, i, j = 1, 2, (2)

where xi, hi and Sj are defined as

xi =
[
xi[0] xi[1] . . . xi[N − 1]

]T
∈ IRN, (3)

hi =
[
hi[0] hi[1] . . . hi[L− 1]

]T
∈ IRL, (4)

and

Sj =


sj [0] sj [−1] . . . sj [−L+ 1]

sj [1] sj [0] . . . sj [−L+ 2]

...
...

...
...

sj [N − 1] sj [N − 2] . . . sj [N − L]

 ∈ IRN×L,

(5)
with (.)T denoting matrix transpose. So, to estimate the
arterial channels, the Euclidean distance between the two
sides in (2) should be minimized.

Another way to estimate the channels is by applying the
CR [12], [23], which states that the following relationship
holds thanks to the commutative and associative properties
of the convolution:

x1[n] ∗ h2[n] = h1[n] ∗ s[n] ∗ h2[n]

= h1[n] ∗ x2[n] = x2[n] ∗ h1[n],
(6)

where s[n] is the central pressure sequence. The previous
equation can be rewritten as

X1h2 = X2h1, (7)

where X2,X2 ∈ IRN×L are filtering matrices in the form

Xi =


xi[0] xi[−1] . . . xi[−L+ 1]

xi[1] xi[0] . . . xi[−L+ 2]

...
...

...
...

xi[N − 1] xi[N − 2] . . . xi[N − L]

 . (8)
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By combining (2) and (7) in one system, the error in the
channel estimation can be defined as

e =



−X2 X1

γ1S1 0N×L

0N×L γ1S1

γ2S2 0N×L

0N×L γ2S2


︸ ︷︷ ︸

A

[
h1

h2

]
︸ ︷︷ ︸

h

−



0N×1

γ1x1

γ1x2

γ2x1

γ2x2


︸ ︷︷ ︸

b

, (9)

where γ1, γ2 are non-negative multipliers introduced to as-
sign weights to the ML outputs. They can be selected based
on a priori knowledge of the ML model’s performance or
empirically from a designated test set.

Therefore, the channels can be estimated by minimizing
the Euclidean norm of the error in (9) as

ĥ = arg min
h

||Ah− b||22. (10)

Under the assumption that X1, X2, S1, and S2 are full rank,
the matrix A is full-rank. Therefore, (10) has a least-squares
solution in the form

ĥ = (ATA)−1ATb. (11)

Before proceeding to the next step, we have to mention the
assumptions that are adopted to reach the ultimate solution.

• A1: The arterial system is approximately linear time-
invariant (LTI) for a small time window.

• A2: N ≥ 2L. This assumption is required to avoid an
underdetermined system in (7).

• A3: The arterial channels do not share any common
zeros. Otherwise, the common zero will be eliminated
in (7).

C. Central pressure estimation

Once the channels are estimated, the input-outputs relation
can be expressed as[

x1

x2

]
︸ ︷︷ ︸

x

=

[
H1

H2

]
︸ ︷︷ ︸

H

s + n, (12)

where H1,H2 ∈ IRN×(N+L−1) are defined as

Hi =


ĥi[L− 1] . . . ĥi[0] 0 . . . 0

0 . . . ĥi[1] ĥi[0] . . . 0

...
. . .

...
...

...
...

0 . . . 0 ĥi[L− 1] . . . ĥi[0]

 ,
(13)

the vector s contains the central pressure samples as

s =
[
s[−L+ 1] . . . s[0] . . . s[N − 1]

]T ∈ IRN+L−1,
(14)

and n is the noise vector. By minimizing the energy of the
noise, the central blood pressure vector can be obtained by
solving the following least-squares:

ŝ = arg min
s
||x−Hs||22. (15)

Motivated by the fact that the change in the mean value
of the blood pressure signal is insignificant as the signal
propagates from the aorta to the peripheral site [12], the
training set can be utilized to constrain the difference between
the mean values of the central blood pressure and that of
the peripheral pressure signals. Furthermore, the noninvasive
measurements of the systolic (smax) and the diastolic (smin)
pressure values can be obtained accurately using several
noninvasive tools [24], [25]. These values with the mean
constraint can be incorporated in (15) as

ŝ = arg min
s
||x−Hs||22

s.t. smin1(N+L−1)×1 ≤ s ≤ smax1(N+L−1)×1

mmin
1 ≤ 1

N
(1T

N×1x1 − vT s) ≤ mmax
1

mmin
2 ≤ 1

N
(1T

N×1x2 − vT s) ≤ mmax
2 ,

(16)

where v =
[
0T
(L−1)×1 1T

N×1

]T
, and mmin

i and mmax
i

are the minimum and maximum difference between the
mean values of the central and peripheral pressure signals,
respectively and are determined from the training data.

D. Sparse representation of the central pressure signal

The central pressure waveforms have, to some extent,
unique shapes and characteristics. This advantage can be put
in use to represent the central pressure signals as a linear
combination of atom signals in a certain dictionary domain
to improve the estimation model [26]. That is, instead of
estimating s in (16), we estimate a sparse vector λ to have
a solution as a sparse combination of the columns of a
dictionary matrix D ∈ IR(N+L−1)×P by altering (16) to

λ̂ = arg min
λ

||x−HDλ||22 + µ||λ||1

s.t. smin1(N+L−1)×1 ≤ Dλ ≤ smax1(N+L−1)×1

mmin
1 ≤ 1

N
(1T

N×1x1 − vTDλ) ≤ mmax
1

mmin
2 ≤ 1

N
(1T

N×1x2 − vTDλ) ≤ mmax
2 ,

(17)

where µ is some tuning parameter introduced to control
the sparsity of the solution. This problem is convex and
the optimal solution can be obtained using the widely used
iterative algorithms such as the interior point or active set
methods.

The dictionary matrix D can be constructed from the
training data by using one of the popular dictionary learning
algorithms, such as k-means singular value decomposition
(K-SVD) [27], method of optimal directions (MOP) [28],
Lagrange dual method [29], and stochastic gradient descent
[30].
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E. In-silico Databases

In this work, we use two public in-silico databases to train
and test the proposed method.

The first database 1 is denoted as DB-A. This database,
[22], provides different pulse waves at different arterial
network locations such as blood pressure, flow velocity,
luminal area, and PPG signals. For each subject, the database
simulates the blood pressure signals for different heart rates.
by varying various physiological and hemodynamic. More
details of this database can be found in [22].

The second database 2 is denoted as DB-B. It encompasses
blood flow, luminal area, and pressure PWs at several arterial
sites such as femoral, radial, and digital arteries for 3, 325
virtual healthy adults, [21]. The pulse waves are generated
by varying certain physical parameters, like the stiffness and
the heart rate, at the normal rate. The cardiac outputs vary
between 3.5 and 7.2 l/min, depending on the heart rate values
(53, 63, and 72 beats/min) and stroke volume (66,83, and 100
ml) prescribed.

III. RESULTS AND DISCUSSIONS

To examine the proposed method’s performance, the two
databases of simulated pulse waves, that are described in the
previous section, are employed. We use DB-A to train neural
networks (NNs), and DB-B for testing purposes.

A. Deep-Learning Model

DB-A is used to train a deep-learning model that consists
of two NNs. The first NN is trained using the time-domain
samples of the femoral pressure signal to predict time-domain
samples of the central pressure. The second NN targets are
also the time domain samples of the central pressure signal,
while the input features are the time-domain samples of the
radial pressure signal. To properly train the NNs, all the
signals are re-sampled at 200 samples per cycle and restricted
to one cardiac cycle.

As shown in Fig. 2, we choose to work with three
hidden layers of dimensions 2-7-3 because this configuration
produces the most accurate results among the other configu-
rations we tested. The activation function of the hidden layers
is the tan-Sigmoid function and that of the output layer is the
linear function.

B. Performance metrics

Two metrics are used as evaluation criteria; the root-
mean-squared error (RMSE) and the correlation coefficient
(r-value). Both of which calculated using the real central
pressure s[n] and the estimated one ŝ[n].

The RMSE is a sample-by-sample error metric evaluated
as

RMSE =

√∑N−1
n=0 (ŝ[n]− s[n])2

N
, (18)

1https://peterhcharlton.github.io/pwdb/ppwdb.html
2https://peterhcharlton.github.io/pwdb/index.html

Fig. 2: multilayer perceptron model of the trained neural networks. The
input nodes are the elements of the femoral pressure vector x1 for the first
neural network and the elements of the radial pressure vector x2 for the

second neural network. The hidden layers contain 2, 7 and 3 neurons
(respectively) that use a tan-Sigmoid activation function. The output is the
aortic pressure vector s and the activation function of the output layer is

the linear function.

while the r-value measures the closeness of the shape of two
signals and is evaluated as

r =

∑N−1
n=0 (s[n]− s̄)(ŝ[n]− ¯̂s)√∑N−1

n=0 (s[n]− s̄)2
√∑N−1

n=0 (ŝ[n]− ¯̂s)2
, (19)

where .̄ represents the average operator.
After training the NNs, a test set from DB-B with noisy

femoral and radial pressure signals are applied to simulate
the real-case scenario. The noise is assumed to be additive
Gaussian with the zero mean and unit variance.

For maximum resolution, the maximum possible channel
length is considered. i.e., L = bN2 c. Also, the dictionary
matrix D is constructed using K-SVD algorithm initialized
using central pressure training signals. The dimension of the
matrix is chosen arbitrarily to be 200 by 726.

C. Discussions

The performance of the proposed approach has been
compared with the pure machine learning-based model and
the output of the CR-based blind estimation model [12]. The
average RMSEs and r-values of the estimated central blood
pressure signals using the pure CR approach, the NN outputs,
and the proposed methods are shown for selected values of
µ, γ1 and γ2 in Fig. 3 and Fig. 4, respectively. In addition,
examples of the reconstructed central blood pressure signals
are shown in Fig. 5. It can be noticed that the hybrid approach
has successfully reduced the RMSE up to 40% compared
to the CR method and 18% − 25% compared to the deep-
learning model. The performance might be boosted further
with a more careful selection of the tuning parameters.

It can be noticed that the values of the tuning parameters
(γ1, γ2 and µ) have contributions in determining the system’s
performance. On one hand, γ1 and γ2 are associated with
the ML models. If the performance of the ML models is
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Fig. 3: The RMSE of the cross-relation solution, NN1, NN2 and the
proposed method for selected values of γ1, γ2 and µ.

Fig. 4: Correlation coefficient of the cross-relation solution, NN1, NN2
and the proposed method for selected values of γ1, γ2 and µ.

known, the models that have better performance should be
assigned higher weights. Since the NNs are trained using DB-
A and tested using DB-B, the NNs are expected to suffer from
underfitting. Therefore, it is better in this situation to reduce
the values of γ1 and γ2 by giving more weight to the CR term.
If we consider the extreme conditions, setting γ1 and γ2 to
large values leads to eliminating the CR term, whereas setting
them to zeros means we are solving the problem without any
help from the ML models.

On the other hand, the parameter µ controls the sparsity of
the solution. Higher µ means the central pressure waveform
can be expressed as a linear combination of fewer dictionary
signals. Setting µ to zero renders a non-sparse solution with
no restriction on the number of dictionary signals. In such a
case, there is a noticeable difference between the values of
two consecutive elements of the estimated vector as seen in
Fig. 5(d). The general trends show that the results get better
if the value of µ is kept between zero and two.

The strength of the proposed method stems from the fact

that it is based on solving a least-squares problem for channel
estimation and a convex optimization problem for the central
pressure estimation; hence, a global solution is guaranteed
and the solution is light from the computational perspective.
One limitation of this method is the difficulty of tuning the
parameters γ1, γ2, and µ to obtain the best-reconstructed
signal. However, when confined to proper ranges, the method
generally works well.

IV. CONCLUSIONS

A hybrid method based on machine-learning and CR
techniques is presented in this paper to estimate central
aortic blood pressure using peripheral pulse waves. While
machine-learning models were utilized to reconstruct the
central pressure signal, the CR method is used to refine the
ML models’ output and enhance the accuracy estimation.
Besides, the estimated signal is represented as a sparse
linear combination of the columns of a dictionary matrix
to strengthen the estimation model’s robustness. The results
show that the proposed method can improve the results up
to 40% compared to the pure CR approach.

Optimizing the tuning parameters to generate the best
performance is considered a prominent future research di-
rection. Another direction is improving the deep learning
model by including medical history, age, sex, Etc., as features
to extract better-estimated signals. Furthermore, leveraging
measurements from more than two peripheral sites and using
multiple ML models might be considered.
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