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Abstract— Retinal models are needed to simulate the
translation of visual percepts to Retinal Ganglion Cells
(RGCs) neural spike trains, through which visual information
is transmitted to the brain. Restoring vision through neural
prostheses motivates the development of accurate retinal
models. We integrate biologically-inspired image features
to RGC models. We trained Linear-Nonlinear models
using response data from biological retinae. We show that
augmenting raw image input with retina-inspired image
features leads to performance improvements: in a smaller
(30sec. of retina recordings) set integration of features leads
to improved models in approximately % of the modeled
RGCS; in a larger (4min. recording) we show that utilizing
Spike Triggered Average analysis to localize RGCs in input
images and extract features in a cell-based manner leads
to improved models in all (except two) of the modeled RGCs.

Index Terms—retinal model, bio-inspired features, com-
puter vision, retinal prosthesis, biological data

I. Introduction

Retina processes the information in a complex way
before relaying it, through numerous Retinal Ganglion
Cell (RGC) types, to the brain [1]. Models of the retina
have received much attention, especially in light of
neural-prosthetic approaches aiming to restore vision [2],
[3]-predicting the retina response is essential to properly
encode a visual scene to electrical neural stimulations
delivered by neural prostheses.

Simple Linear-Nonlinear (LN) models predict accu-
rately retina’s response to white noise [4], more re-
cent deep learning models accurately reproduce retina’s
response to natural images [5], [6] while bio-inspired
image features, based on RGC functions, have been
integrated to retina models of both linear and nonlinear
RGC types [7]. Still, validation of bio-inspired image
features has been limited to artificial data [7]. Integration
of features to more RGC models needs to be further
explored.

In this study we validate using bio-inspired image
features to improve retina models. We use biological
data recordings from RGCs, as a more solid validation
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procedure. In order to do so, we modify feature extrac-
tion to account for unknown biological RGC response
parameters and show how computational neuroscience
methods, proper experimental stimulus design and Al
modeling methods may be utilized to properly extract
the image features. We use LN models which can be
trained easily with a moderate amount of data and are
straightforward to use with features as input. We show
that combining image input with the extracted features
improves RGC models and highlight that determining
RGC spatial and temporal response characteristics is
critical to properly extract image features.

II. Methods
A. Datasets

We used two datasets of RGC responses to natural
images:(i) a Salamander! set, (ii) a Mouse? set.

Salamander set contains recordings from 21 biological
RGCs. Natural Images of 50 x 50 pixels are projected
on the retina for 1 s. each and for a total duration of
30 s. Eye-jitter motion was added in image projection.
To reduce noise in the recordings, RGC response was
averaged over 112 repeated projections of the image
sequence on the retina. In total, we have 3003 recordings
per cell.

Mouse set contains recordings from 60 biological
RGCs. Natural Images of 50 x 50 pixels are projected
on the retina for 50 ms each and for a total duration of
4 min. The sequence starts with 300 ms of darkness. The
set contains static images only. We record cell response
every 10 ms. In total, we have 24479 recordings per cell.

Reliably-recorded RGCs: In ‘Mouse’ set, we get twelve
reliably-recorded RGCs, through Spike Triggered Aver-
age (STA) analysis [8]. Errors in raw data processing
(e.g., in spike sorting) and/or at the retina preparation
may corrupt the biological recordings. We trained a Con-
volutional Neural Network (CNN) model [5] on ‘Mouse’
set and then fed white noise sequences to the model to
get an unbiased Receptive Field (RF) estimate through
STA [8]. Reliable cells were selected based on spatial
(center-surround antagonism) and temporal (biphasic
response) STA characteristics. The STA properties of
RGCs have been documented in the literature [8].

1 Available at
deep-retina-tutorial
?Biological recordings at Professor’s E. Fernandez lab

https://github.com/lmcintosh/
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Fig. 1: Retinal Ganglion Cells (RGCs) localization and RGC-
parametrized Feature extraction: We show the Receptive
Fields (RFs) of reliably-recorded RGCs in 50 x 50 pixels
Images. RGCs are contained in a 17 x 25 pixels Image sub-
region (left). In RGC-parametrized feature extraction, we feed
the top-left image sub-region to the LN model, which contains
all the RFs (right). RGCs localization was conducted by STA
analysis of RGC response to white noise, using a CNN model
of the RGCs

B. Feature Extraction

We trained models with input: (i) unprocessed images
(‘D), (ii) Features (‘F’) and (iii) Features and Images
(‘FT’). Feature extraction (FE) follows our previous
work [7]. Since spatiotemporal RGC properties are not
available in the datasets, we set an RF size of 18 x 18
pixels [7], tile the images with non-overlapping RFs that
cover them entirely and extract features in all the RFs
defined. The aforementioned modification increases the
total number of extracted features in each image, which
we limit by dropping all the ‘Detector’ features [7] and
extracting: Difference of Gaussians, Canny edges, optical
flow and uniformity features. This way, we extract 7527
features in 50 x 50 pixels images. This is our baseline,
‘Full Image’ FE approach.

FE in Still Images: We modified FE in the static-
images ‘Mouse’ set, to remove motion-based features
(Optic Flow, Temporal Uniformity). This way, we ex-
tract 2059 features in 50 x 50 pixels images.

RGC-parametrized FE: We localized RGC positions in
Images of the ‘Mouse’ set. We determined the RF spatial
positions of the twelve reliable RGCs (see ‘Reliably-
recorded RGCs’ above and fig. 1) and isolated a 17 x
25pixels image region that contained all the RFs. We
extracted 1281 features (429 in the ‘Still Images’ case)
in the aforementioned image sub-region.

C. Model description and training

To predict RGCs firing rates, we trained Linear-
Nonlinear-Poisson (LN) models with a parametric ‘Soft-
plus’ nonlinearity optimizing the Poisson loss func-
tion [4], specifically the mean value of the error:

y—y-logy (1)

where g is the estimate of y. LN models generate RGC
neural spikes from an inhomogeneous Poisson process
with rate A:

At) = f (k- (1)) (2)
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Fig. 2: Mean Testing set performance (correlation coefficient)
of reliably-recorded RGCs LN models with Image input over
varying temporal filter extent (¢y) values

ccImages (Train set) cc Features (Train set)

+

(c) Input: Features

(a) Input: Images (b) Input: Features  and Images

Fig. 3: Performance (cc) of LN models in predicting RGC
response. Points in the graph denote the cc of specific RGCs.
The mean value and the range of three standard deviations
are plotted. Results for ‘Salamander’ RGCs, Training set

where f is a nonlinearity and k a linear filter acting on
input .

We applied the numerical stochastic gradient descent
optimization algorithm and did early-stopping in train-
ing. We did a 70% — 30% Training-Testing set split.

We evaluate our models with the correlation coefficient
(cc) that has been used extensively in the literature [5],
[6], [9):

Vi@ — )2/ (v — )
where n is the sample size, z;,y; are sample points and
T,y the respective mean values.

In LN models, we need to set the temporal extent
ty of the linear filter: to what temporal extent past
inputs influence RGC response? In ‘Salamander’ set the
scientists that gathered the data determined ¢y value
(400 ms). In ‘Mouse’ set we examined cc of LN models
with ‘I’ input and varying ¢y (fig. 2, observing only
small variations in model performance. We consequently
set t; = 400 ms, the value at which our CNN models
(see ‘Reliably-recorded RGCs’) yielded the anticipated
(center-surround spatial and biphasic temporal) STA
filters shape.

Txy

III. Results and Discussion

A. LN models with features show improved performance
in a limited-size, natural-image dataset

In figs. 3, 4, 5 we show our results on ‘Salamander’
dataset. We applied early-stopping in model training.
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Fig. 4: Performance (cc) of LN models in predicting RGC
response. Points in the graph denote the cc of specific RGCs.
The mean value and the range of three standard deviations
are plotted. Results for ‘Salamander’ RGCs, Testing set
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Fig. 5: Performance (cc) of LN models. We compare models
of each RGC over different input representations-Images,
Features, Features and Images

In figs. 3, 4 we observe that all our models-ie with
‘', ‘F’ and ‘FI’ input, performed according to our
expectations (cc = 0.10) for the dataset size [5].

We compare models on an RGC-by-RGC basis in fig. 5.
Models with features input (‘F’, ‘FI’) are improved in
comparison to the model with image input (‘I’), for each
cell (point in fig. 5) with a negative margin. ‘F’ models
overperform ‘I’ models in 14 of the total 21 RGCs.

Still, not all ‘FI" models overperform ‘I’ models,
as expected by observing that ‘FI’ input is ‘I’ input
augmented by ‘F’. We conclude that a larger dataset
is needed to fit a ‘FI’ model, which is more complex (i.e.
has more parameters) than an ‘I’ model.

B. Cell- and dataset- specific modifications in feature
extraction lead to improved LN models

In Table I we present the Testing and Training set
performance on ‘Mouse’ dataset for three -‘Full Image’,
‘RGC-parametrized’, ‘Still Images’- feature extraction
approaches.

We observe that performance of the baseline (‘Full
Image’) approach is below our expectations [5], even
for LN models with Image (‘T’) Input. The lower per-

‘ Full Image RGC-parametrized  Still Images

I F FI I F FI F FI
Train | 0.30 0.20 0.14 | 0.43 048 0.39 | 049 045
Test 0.03 0.03 0.03 | 0.07 0.03 0.03 | 0.06 0.09

TABLE I: Performance (cc) of LN models in predicting RGC
response. Three feature extraction approaches, the baseline
‘Full Image’ approach, RGC-parametrized extraction (‘RGC-
parametrized’) and removing motion-based features (‘Still
Images’), are compared. Results for ‘Mouse’ RGCs
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Fig. 6: Performance (cc) of LN models in predicting RGC
response. Points in the graph denote the cc of specific RGCs.
The mean value and the range of three standard deviations
are plotted. Results for ‘Mouse’ RGCs, Training set
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Fig. 7: Performance (cc) of LN models in predicting RGC
response. Points in the graph denote the cc of specific RGCs.
The mean value and the range of three standard deviations
are plotted. Results for ‘Mouse’ RGCs, Testing set

formance of ‘I’ models, compared to ‘Salamander’ set,
directs us (i) to investigate dataset differences and to
examine how we may address them, or (ii) to point to
biological differences between the RGCs, which make
unfavorable the application of our approach in models
of the mouse retina. We see that noise suppression (by
repeating input images) in the recordings and eye-jitter
motion favoured FE in ‘Salamander’ set.

We start by applying RGC-parametrized feature ex-
traction [7]. All twelve RGCs in the ‘Mouse’ set are
concentrated in an image region (fig. 1), which we
isolate and use as model and feature extraction input.
Doing so, we guide the LN filters to the image region
that the modeled RGCs ‘sense’, and also reduce the
number of parameters (filter weights) in our models.
In previous work, we have applied RGC-parametrized
feature extraction in a spatially more restrictive way,
isolating the image region that spans a single RF, which
further lowers the dimensionality of extracted features
to around twenty [7]. We see that informed-ie Cell
Based- FE is important to integrate features to improved
RGC models. In Table I, we see an improvement in
‘T” models, but feature-based approaches (‘F’; ‘FI’) still
under-perform.

We next turn to the extracted features, remove
all motion-based features and maintain the RGC-
parametrized approach. While Salamander set has a
‘jitter’ motion, Mouse set has no motion at all. We
observe (Table I) that feature approaches are now im-
proved. We note that ‘FI’ approach now dominates ‘I’
approach, with only two cases of ‘I’ models performing
better than ‘FI” models (fig. 8). However, ‘F’ models
show a damped improvement-low margins (fig. 8) that
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Fig. 8: Performance (cc) of LN models. We compare models
of each RGC over different input representations- Images,
Features, Features and Images

are very concentrated around 0 -in ‘Mouse’ set compared
to ‘Salamander’ set- in which we see larger margins
(fig. 5). This highlights the limitations of applying
feature extraction in still Images datasets.

Stimulus design- i.e. selecting appropriate stimuli to
project on the retina and make recordings- can facili-
tate feature extraction. White noise stimuli simplify ¢
identification (see fig. 2, a sweep of ¢; values provided
limited information) and RGC localization through an
unbiased STA estimate of RGC response. More features
can be extracted when motion is present in the stimuli.

Overall, we see that ‘FI’ approach was more suitable
for the ‘Mouse’ set, which is larger and so can be used
to train a complex (high number of parameters) model
but lacks any motion, while ‘F’ approach excelled in the
smaller ‘Salamander’ set in which we were able to extract
all (motion and non-motion dependent) features.

IV. Conclusions and Future Work

We have integrated biologically-inspired image fea-
tures in retina models using biological recordings to
train and evaluate our approach. We show that model
performance improves when features are used as model
input. We argue that characterizing RGCs spatiotempo-
ral response properties is a crucial step: localizing RGCs
improves feature extraction, determining the extent of
temporal response is important in models of RGCs.
Dataset characteristics, as the inclusion of movement,
determine which image features we can extract and affect
the impact on performance of extracting image features.
Consequently, the importance of a close collaboration
between experimentalists and engineers is highlighted by
this study.

In future work, we should extend our approach from
simple (LN) models to complex (Deep learning-DL)
models which can reliably reproduce retina’s response
to natural images[6]. Feature fusion approaches [10],
[11], [12] should be considered to explore how image
features are integrated in DL models. Another impor-
tant direction entails the explainability of our models,
revealing which features and/or image regions influence
the retina’s output, at varying stimulus conditions [13].
Towards improved visual prostheses, accurate retina
models should be combined with smart image processing
algorithms to implement important visual functions, as

for example methods to predict where visual attention
is directed [14].
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