
A Novel Optimization Algorithm Leveraging a Three-Dimensional
Approach of Periscopic, Pheromonic and Fractal Search

Rahul Dasharath Gavas, Venkatasubramanian Viraraghavan, Ramesh Kumar Ramakrishnan
TCS Research, India

Abstract— This paper focuses on a new algorithm for solving
optimization problems using the nature of food search be-
haviour of caterpillars. The paper describes how the periscopic,
pheromonic and fractal search properties analogous to the
caterpillars, can aid in designing a new optimization algorithm.
The performance characteristics of the new method is compared
using 26 standard test functions and the area under the curve
of the fitness evaluations is used to validate and compare
the proposed algorithms against existing related works. The
proposed algorithm is found to be efficient when compared with
the existing methods. The proposed algorithm is then tested on
a real world problem to remove signal noise from eye gaze data,
effectively.

I. INTRODUCTION

Nature has inspired computing solutions to several com-
plex problems [1], [2], [3], [4], [5], [6], [7], [8]. Judging by
the number of algorithms proposed, nature inspires solutions
seems to work well for optimization problems. In general, an
optimization problem involves a mathematical or algorithmic
process of finding the best combination of parameters of a
device or experiment that minimizes or maximizes its output,
defined by a target-, cost-, or fitness-function [2]. However,
an exhaustive search across possible parameter-values and
ranges is impractical. Typical solutions reduce the search
space, but can settle at local optima instead of the global
optimum. Metaheursitc algorithms increase the probability of
finding the global optimum solution. They do so by striking
a balance between the spread of randomly searching various
regions of the search space and refining the solutions in each
region.

Meta-heuristics can draw upon physical laws (electro-
magnetic force, gravity etc.), evolutionary processes (repro-
duction, recombination, selection, and mutation), or swarm
behaviour. Some optimization techniques of the last type are,
Differential Evolution (DE) [3], Bat-inspired Algorithm (BA)
[4], Grey Wolf Optimizer (GWO) [5], Whale Optimization
Algorithm (WOA) [6], Crow Optimization [7], and Butterfly
optimization [8]. In this paper, a new meta-heuristic algo-
rithm inspired by the food search behaviour of caterpillar
worms is proposed.

II. METHODOLOGY

Most of the caterpillars species are herbivorous (foliv-
orous) in nature, but some (around 1%) are insectivorous
and some are even cannibalistic. Some caterpillars feed on
other animal products; for instance, cloth moths feed on
wool, while horn moths feed on the hooves and horns of

dead ungulates. They are typically voracious feeders. Most
of them are serious agricultural pests.

The movement or the dispersal of caterpillars is governed
by the characteristics of natural surfaces which has a huge
impact on their reproductive and survival success [9], as
well. Along with this, the pheromone of caterpillars guide
their peers in the food search task. The nature of the surface
is assessed using fractal analysis as the surface area and
distance values are basically a function of the scale at which
the measurements are made. The motion of caterpillars is
dependent on the roughness of the surface and this particular
aspect is incorporated in the proposed scheme using fractal
dynamics of the solution space. Another important movement
behaviour of caterpillars is the waving of their body. They
lift their bodies upto a certain height and wave themselves
in order to look for food in their vicinity. This nature along
with the fractal analysis and the usage of pheromone is used
to create the proposed algorithm.

A. Proposed Caterpillar Search Algorithm

The proposed method is given in Algorithm 1. The number

Algorithm 1: Caterpillar Food Search Algorithm

1 Randomly initialize the positions of N worms in the
search space

2 W = Initialize the state for each worm
3 while termination condition is not met do
4 Compute α for fitness membership values (II-B)
5 for i = 1 to N worms do
6 Choose one worm randomly, denoted by si
7 Define worm’s waving probability ri
8 if ri ≥ Pw then
9 Evaluate Hw according to (3)

10 ui = wi + rand()×Hw × (si − wi × α)
11 end
12 else
13 ui = rand()× α
14 end
15 end
16 Update W from U based on (4)
17 end

of worms selected is denoted as N each with length Lw. The
worms wave their bodies randomly in periscopic fashion to
glance their neighbourhood and this probability is defined
as Pw and follow their nearby worms using the pheromone.
The roughness/fractality of the surface that determines the

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 550

movement of the worms is given by the tuning parameter α
computed using Kat’z algorithm [10].

1) Initialization of parameters: The positions of the N
worms in D-dimensional search space are represented by
W as given in 1.

W =

w1,1 w1,2 . . . w1,d

w2,1 w2,2 . . . w2,d

...
...

...
...

wN,1 wN,2 . . . wN,d

 (1)

Every worm wi,∗ ∈W is a feasible solution and the number
of decision variables (dimensions) is represented by D. For
brevity, wi,∗ is denoted by wi. Initially, the worms are placed
at random positions. Next, the fitness value of each worm
is computed by using its decision variable values in the
objective function under test. This is carried out for every
worm in W .

2) Update worm position: The worms update their posi-
tions in this phase to the potential state U . The parameter ri
is a random number in the range (0,1) and if this value is
greater than Pw, then it is taken as an instance of the worm
waving its body in a periscopic way. The worm then updates
its path using the relation in equation 2. When a given worm
i waves its body, it gets an idea of the nearby vicinity and
follows the path of the worm j due to its pheromone (j
is selected randomly). Its movement is determined by the
waving height and the fractal value α (II-B) of the fitness
functions traced by N worms as follows,

ui = wi + rand()×Hw × (wj − wi × α) (2)

Initially, in the first run, the α value is taken as 0.5 as the
fitness function evaluations are not present. Note that ui are
rows of U just as wi are rows of W . The waving height Hw

is different every time and we model it as follows,

Hw = Lw + (rand() + 1)× 0.5 (3)

with Lw being the length of the worm obtained empirically.
The factor (rand() + 1)*0.5 ensures that the worm lifts at
least 50% of this total length during waving phase. Hence,
the mean waving height is 75% of the worm’s total length.
If the worm doesn’t wave, i.e. ri ≤ Pw, then the position
of that worm is reset randomly. After updating the worm
positions, each of the new worms is tested and the fitness
value f(·), is obtained. The fitness values are then subjected
to fractal value computation and this value is used in the
next iteration.

3) Update state of the worm: The state W is updated from
a potential new state, U , as follows for each i ∈ {1, . . . , N}.

wi =

{
ui if f(ui) is better than f(wi)

wi otherwise
(4)

The above process is carried out until any one of the
termination criteria is met. The criteria can be either of the
following: (i) the number of function evaluations made, and
(ii) if the best solution obtained is lower than a tolerance
value for global minima, or higher than the tolerance value
for global maxima.

TABLE I
DETAILS OF THE TEST FUNCTIONS USED FOR THE STUDY

Function
id Name Lower

bound
Upper
bound Dimensions

f1 Beale -4.5 4.5 2
f2 Easom -100 100 2
f3 Matyas -10 10 1
f4 Bohachvesky 1 -100 100 2
f5 Booth -10 10 2
f6 Michalewicz 2 0 2
f7 Schaffer -100 100 2

f8 Six Hump
Camel Back -5 5 2

f9 Bohachvesky 2 -100 100 2
f10 Bohachvesky 3 -100 100 2
f11 Shubert -10 10 2
f12 Colville -10 10 4
f13 Michalewicz 5 0 5
f14 Zakharov -5 10 10
f15 Michalewicz 10 0 10
f16 Step -100 100 30
f17 Sphere -100 100 30
f18 Sum Squares -10 10 30
f19 Quartic -1.28 1.28 30
f20 Schwefel 2.22 -10 10 30
f21 Schwefel 1.2 -100 100 30
f22 Rosenbrock -30 30 30
f23 Dixon-Price -10 10 30
f24 Rastringin -5.12 5.12 30
f25 Griewank -600 600 30
f26 Ackley -32 32 30

B. Assessment of fractal properties

This section briefs the extraction of the fractal nature of
the data using Katz Fractal Dynamics (FD) Algorithm [10].
The Katz FD value is given by,

α =
log10(n)

log10(
d
L) + log10(n)

(5)

where d is the euclidean distance between the first point in
the time series and the point lying at the farthest distance; L
is the total length of the data. Let a be the average distance
between the successive points in the data then, the number
of steps in the curve is given by, n = L

a . The fitness values
computed for all worms are treated as a time series whose
Katz FD value is evaluated.

C. Test functions used

We selected 26 standard test functions [3], [4], [5], [6], [7],
[8] for evaluating our proposed optimization algorithm. The
details of each of the functions with the parameters used
is presented in Table I. These test functions cover a large
spectrum of evaluations that can aid in benchmarking the
designed optimization algorithm.

III. RESULTS AND DISCUSSIONS

We designed a metric to analyse the effectiveness of the
optimization algorithms which is basically the measure of
area under the curve (AUC) of the convergence curve for
the given algorithm over the predefined number of iterations
(bounded by the maximum value obtained in the first run
and the solution obtained by that particular algorithm at the
end of the predefined number of iterations). This can be
visualized in Fig. 1. The AUC is the region bounded by

551

TABLE II
MEAN (SD) OF AUC VALUES ACROSS 30 RUNS. BEST PERFORMER IN

BOLD. PROPOSED METHOD IS THE BEST FOR 15/26 FUNCTIONS.

F id Proposed Crow
[7]

Bat
[4]

Whale
[6]

Butterfly
[8]

Grey
Wolf
[5]

DE
[3]

f1 12.99
(14.51)

1.4E+9
(6.07E+9)

1773.74
(3662.86)

167.31
(389.57)

717.92
(588.68)

58.95
(277.44)

8.07
(7.22)

f2 25.3
(8.3)

31.3
(5.6)

1828
(520.2)

30.7
(29.1)

1811.5
(721.1)

9.75
(2.3)

57.6
(21)

f3 0.43
(0.29)

16.23
(29.08)

189.95
(200.56)

0.78
(0.71)

14.72
(12.22)

0.83
(0.62)

0.98
(0.71)

f4 693.01
(514.62)

935.28
(803.64)

396401.4
(816218.3)

1311.66
(1313.8)

13309.6
(11892.7)

637.7
(492.37)

878.79
(941.35)

f5 567.1
(365.39)

29091.6
(72612.5)

8295.47
(9580.77)

653.97
(600.8)

1414.77
(870.2)

663.48
(513.14)

483.25
(504.22)

f6 4.89
(3.13)

12.16
(4.37)

1132.42
(560.95)

13.17
(19.36)

-Inf
(NaN)

63.76
(290.53)

1.81
(1.29)

f7 12.95
(9.07)

16.39
(19.29)

480.18
(461.55)

39.19
(42.19)

203.29
(122.33)

9.16
(21.73)

18.09
(25.52)

f8 3.22
(1.82)

21180.05
(81706.26)

1272.34
(1632.38)

5.85
(5.83)

1.3E+7
(4165757)

3.6
(2.32)

3.77
(3.24)

f9 489.83
(374.88)

1116.77
(817.78)

447771.1
(524201.5)

1007.97
(1097.42)

12240.03
(10847.48)

767.45
(633.46)

820.4
(554.4)

f10 481.6
(340.13)

988.96
(789.75)

364702.1
(646525.6)

1884.76
(1862.31)

13838.06
(13264.11)

683.18
(555.79)

859.26
(701.19)

f11 3798.69
(1723.36)

2557.4
(726.55)

199352.7
(103017.5)

1158.98
(1603.11)

-Inf
(NaN)

6190.25
(22872.84)

1224.63
(615.88)

f12 7356.85
(6992.45)

949080.5
(2658756)

1337235
(1573365)

23714.99
(23516.33)

68306.47
(50963.12)

8718.38
(6395.61)

14794.19
(11884.22)

f13 1447.36
(531.32)

673.28
(470.48)

5187.5
(840.21)

2294.52
(1132.65)

-Inf
(NaN)

1717.61
(700.24)

71.55
(74.76)

f14 44485.7
(99044.43)

11629560
(27726330)

11325578
(12797968)

89687.58
(117749.4)

200089
(440769.7)

2688028
(85418.22)

21795.63
(38171.18)

f15 7761.61
(827.05)

3825.27
(2034.01)

12406.24
(1490.77)

7864.92
(1800.02)

-Inf
(NaN)

7960.73
(851.99)

436.98
(225.25)

f16 43085.64
(12055.25)

565169.1
(92621.04)

43490751
(7726114)

406480.5
(113993.4)

800862
(66441.95)

358610.5
(55840.78)

1886637
(195888.5)

f17 36837.62
(12768.45)

542032.4
(71620.05)

38071684
(9666252)

376178.2
(85330.54)

778965.3
(47161.57)

391808.3
(68872.64)

1860255
(186114.9)

f18 5289.22
(1337.58)

266409.2
(216279.7)

6114410
(1743323)

55020.04
(18351.08)

138544.5
(13354.11)

47684.41
(7755.81)

250514.3
(26572.02)

f19 31.95
(9.52)

5.75E+8
(2.04E+9)

5217.11
(6576.03)

591.59
(206.81)

1565.76
(211.79)

455.89
(96.56)

2226.3
(411.5)

f20 1.65E+10
(6.32E+10)

5.69E+42
(3.12E+43)

208182
(39325.78)

1.98E+13
(4.19E+13)

558.28
(357.76)

6.76E+12
(1.92E+13)

1.87E+13
(4.83E+13)

f21 534889.2
(167528.9)

8333270
(1434724)

5.93E+08
(1.36E+08)

5529166
(1650880)

8762013
(814621.5)

4965894
(807743.2)

24789049
(2553670)

f22 65038247
(26701308)

4.1E+9
(9.9E+9)

3.66E+10
(1.35E+10)

1.11E+9
(3.76E+8)

6.81E+8
(87650243)

9.02E+8
(2.62E+8)

4.48E+9
(7.24E+8)

f23 444674.9
(159837.9)

4.33E+8
(2.28E+9)

2.99E+8
(1.07E+8)

8050411
(3345680)

8907776
(1398584)

6648936
(1992828)

30721396
(6114181)

f24 1752.8
(695.73)

110187.2
(21394.4)

610470.5
(187387.7)

15655.02
(12571.14)

292770.3
(102077.1)

15982.06
(2833.89)

146740.9
(12483.67)

f25 361.38
(146.37)

1221.29
(171.02)

900520
(154301.6)

3555.66
(1040.44)

10846.48
(703.09)

3486.91
(669.1)

17753.05
(1343.65)

f26 143.13
(22.45)

10421.61
(1730.37)

39269.29
(225.88)

408.51
(134.79)

1773.67
(103.38)

444.4
(33.21)

2359.89
(128.27)

the curve (for a given algorithm) with coordinates, (global
min, initial best value) and (number of iterations, final best
solution). In the example of Fig. 1, the global minimum is at
0 and the number of iterations is 2000, since we noticed no
change in convergence behavior of the algorithm above 2000
runs. Each algorithm starts with an initial arbitrary value and
ends with its final best value. The main advantage of using
this measure is that it allows to get an insight of how fast
the algorithm can converge towards the global minima as
it incorporates the essence of both time taken (iterations)
and the solution obtained. Table II shows the average AUC
for 30 runs for different optimization algorithms tested
over 26 benchmark functions. It is to be noted that the
proposed method is better than the existing algorithms as
it converges faster which is evident from the lesser AUC
values obtained. The proposed algorithm is the best across
15 out of the 26 functions while the next best is 6 out of
26. The problem of searching the global solution becomes

Fig. 1. Illustration of AUC measure for two algorithms for 2000 iterations.
The area covered by each of the curve from their respective upper limits
till the global minima is considered.

harder with the increase in the dimension of the variables in
the test functions. In this study, the test functions from f14 to
f26 have higher dimensions and it is seen that the proposed
algorithm outperforms the rest in 10 out of 13 cases.

A. Use case - Eye tracking noise removal
Eye tracking finds various applications in cognitive state

and well-being analysis [11], [12]. Obtaining noise free gaze
data is vital for such applications [13]. Fig. 2 shows a sample
gaze map obtained using an eye tracker against known target
ground truth locations (shown as ‘+’ sign). The correspond-
ing estimations provided by the eye-tracker (shown using
circular points) in the figure have an offset from the ground
truth locations. This offset is considered as systematic error
in the realm of eye tracking [13]. Systematic error is caused
mainly due to badly performed calibration phase, and/or due
to head movements of a subject and/or sudden jerk in the
position of eye tracker after the initial calibration. Consider
a cognitive test like the digit symbol substitution test (DSST)
which involves eye tracking for assessing cognitive functions
[11]. Gaze analysis is used to test which entities the partic-
ipant is currently gazing at or the gaze path traversed. Due
to systematic errors, the system can flag a trial as incorrect
even if performed correctly. Also, in applications such as
virtual keyboard control using eye tracking [14], systematic
errors can result in activating unattended keys leading to
several errors in terms of application control and adverse
user experience. Hence, removal of systematic error is vital
in eye gaze-based applications. We use this use case to show
how the proposed algorithm can correct the systematic error
significantly. Standard infrared-based eye trackers, generally
comes with their own calibration phases, termed as primary
calibration. However, even after properly undergoing this
phase, it is seen that the systematic error still persists [13]. As
the calibration phase is part of the hardware, it is not possible
to get direct access to the learned parameters/models from
the calibration phase, and thus we cannot fine tune the model
to have further improvements in gaze detection. Hence, it
is advisable to have another calibration phase (secondary)
on top of the primary, with known target calibration points
(9 point scheme as shown with ‘+’ sign in Fig. 2). This
secondary calibration can be deployed as follows. The task is

552

Fig. 2. Illustration of gaze points on the 9 static locations (fixation cross ‘+’). Circles indicate the raw eye tracker gaze points and the asterisk (*) shows
the corrected points

Fig. 3. RMSE values for the eye tracker provided and corrected gaze
coordinates between the detected and the target ground truth locations.

to solve a minimization problem with the objective function
being |

−→
G −

−→
C |, wherein

−→
G represents ground truth, in the

calibration phase (here, secondary calibration).
−→
C represents

corrected gaze coordinates, associated with raw gaze coor-
dinates

−→
F , received from an eye tracker and |

−→
G −

−→
C | is

the Euclidean distance between
−→
G and

−→
C . Let

−→
F represent

the raw gaze coordinates received from the eye tracker for
a static position viewed on a screen.

−→
F is a 2-dimensional

vector consisting of the horizontal and vertical screen coordi-
nates,

−→
F = [(x1, y1), (x2, y2), ..., (xN , yN)] where N is the

number of points and is a function of the sampling rate of the
eye tracker. The corrected gaze coordinates which is desired
to be bereft of the systematic error may be obtained as,−→
C =

−→
F ∗T , where T is a transformation matrix which needs

to be derived for a static calibration point. The normalized
screen coordinates are obtained when a subject is gazing at 9
different locations on the screen. The optimal transformation
matrices for each of these 9 points are computed using
the ground truth locations, in the calibration phase. The
test phase makes use of these transformation matrices to
correct the eye tracker data. Fig. 2 illustrates corrected gaze
coordinates for the eye tracker data (as asterisk) in the test
phase. It is noted that the processed data (asterisks) come
closer to the ground truth locations (black fixation cross)
in comparison to the raw eye tracker data (circles). The root
mean square error (RMSE) between the gaze coordinates and
the ground truth locations for both the eye tracker provided
and corrected data (in the test phase) is shown in Fig. 3. It is

to be noted that the usage of optimization helps in reducing
the systematic error considerably.

IV. CONCLUSIONS AND FUTURE SCOPE

This study aimed at designing a new optimization algo-
rithm motivated by the 3 important characteristics of cater-
pillar’s food search behaviour, i.e. head waving (periscopic),
usage of pheromone and movement type (fractality). The
technique is tested on 26 standard test functions of varying
difficulty levels. It is seen that the proposed algorithm is
better in performance when compared to the closely related
approaches. Finally, the optimization scheme is used to min-
imize the systematic error in eye tracking data. As a future
roadmap, we would also like to incorporate the proposed eye
tracking systematic error correction as primary calibration
phase for in-house developed eye trackers using web camera.

REFERENCES

[1] Shan He, Henry, and JR, “Group search optimizer: an optimization
algorithm inspired by animal searching behavior,” IEEE transactions
on evolutionary computation, vol. 13, no. 5, pp. 973–990, 2009.

[2] Ramin Rajabioun, “Cuckoo optimization algorithm,” Applied soft
computing, vol. 11, no. 8, pp. 5508–5518, 2011.

[3] Swagatam Das and P Suganthan, “Differential evolution: A survey of
the state-of-the-art,” ITEC, vol. 15, no. 1, pp. 4–31, 2010.

[4] Yang and Gandomi, “Bat algorithm: a novel approach for global
engineering optimization,” Engineering computations, 2012.

[5] Mirjalili, Mohammad, and Lewis, “Grey wolf optimizer,” Advances
in engineering software, vol. 69, pp. 46–61, 2014.

[6] Seyedali and Lewis, “The whale optimization algorithm,” Advances
in engineering software, vol. 95, pp. 51–67, 2016.

[7] Alireza Askarzadeh, “A novel metaheuristic method for solving con-
strained engineering optimization problems: crow search algorithm,”
Computers & Structures, vol. 169, pp. 1–12, 2016.

[8] Arora and Singh, “Butterfly optimization algorithm: a novel approach
for global optimization,” Soft Computing, pp. 715–734, 2019.

[9] SB Weiss and DD Murphy, “Fractal geometry and caterpillar dispersal:
or how many inches can inchworms inch?,” 1988.

[10] Michael J Katz, “Fractals and the analysis of waveforms,” Computers
in biology and medicine, vol. 18, no. 3, pp. 145–156, 1988.

[11] Chatterjee et al, “Evaluating age-related variations of gaze behavior
for a novel digitized-digit symbol substitution test,” Journal of Eye
Movement Research, vol. 12, no. 1, 2019.

[12] Gavas et al, “Effect of cognitive load on a random sequence generation
task,” in 2019 IEEE Region 10 Symposium (TENSYMP). IEEE, 2019,
pp. 243–248.

[13] Gavas et al, “Enhancing the usability of low-cost eye trackers for
rehabilitation applications,” PloS one, vol. 13, no. 6, 2018.

[14] Khasnobish et al, “Eyeassist: A communication aid through gaze
tracking for patients with neuro-motor disabilities,” in PerCom
Workshops. IEEE, 2017, pp. 382–387.

553

