
  

  

Abstract— With the purpose of providing an external 
human-machine interaction platform for the elderly in need, a 
novel facial surface electromyography based silent speech 
recognition system was developed. In this study, we propose a 
deep learning architecture named Parallel-Inception 
Convolutional Neural Network (PICNN), and employ 
up-to-date feature extraction method log Mel frequency spectral 
coefficients (MFSC). To better meet the requirements of our 
target users, a 100-class dataset containing daily life-related 
demands was designed and generated for the comparative 
experiments. According to experimental results, the highest 
recognition accuracy of 88.44% was achieved by proposed 
recognition framework based on MFSC and PICNN, exceeding 
the performance of state-of-the-art deep learning algorithms 
such as CNN, VGGNet and Inception CNN (3.22%, 4.09% and 
1.19%, respectively). These findings suggest that the newly 
developed silent speech approach holds promise to provide a 
more reliable communication channel, and the application 
scenery of speech recognition technology has been expanded at 
the same time. 
 

I. INTRODUCTION 

The aging of population is becoming a social issue in some 
countries, including China. With the development of 
technologies, we are now seeking the implementation of 
human machine interface in living assistance for the elderly. 
While automatic speech recognition (ASR) has been a mature 
technique for human machine interaction, it has some 
unavoidable limitations regarding to its poor performance in 
highly noisy environment. It is also inconvenient or even 
inaccessible for the elderly with disorders like dysphonia [1]. 
To better serve the target users, and further broaden the 
application of speech recognition, we adopt the silent speech 
recognition (SSR), which is independent of acoustic signals, 
in this research. It provides a communication platform for the 
elderly in need with great potential in recognizing human 
speech using physiological modalities, among which surface 
Electromyography (sEMG) has been studied and applied in 
many researches [2]. 

Speech recognition using EMG signals has been proposed 
since the mid-1980s, when researches showed that surface 
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Electromyography (sEMG) signals contained speech-related 
information and could be used as an alternative of acoustic 
signals [3, 4]. According to previous researches [5, 6], time 
domain features are commonly used in feature extraction of 
sEMG signals. While spectrum features like Mel-Frequency 
Cepstral Coefficients (MFCC) used in automatic speech 
recognition [7, 8, 9] and power spectrum-based features 
extracted from sEMG signals [10] are also adopted in the 
signal processing nowadays with the development of machine 
learning algorithms. They show strong representation ability 
in previous researches and have promising effectiveness in 
silent speech recognition systems. On the other hand, machine 
learning algorithms such as feedforward neural network [11], 
random forests [12] and support vector machine [13] have 
been implemented in speech recognition process to recognize 
human intentions. With the development of computational 
devices, some deep learning architectures like convolutional 
neural network (CNN) [8] and bidirectional long short-term 
memory (BLSTM) [14] are also applied in speech recognition 
tasks, showing outstanding and stable performance in previous 
studies. 

As far as we know, most researches on sEMG based silent 
speech recognition have been carried out for English with a 
few for Chinese language. Considering the datasets used in 
former studies, the complexity of sEMG signals collected by 
our own, and the differences among languages, our research 
focused on 100-class of Chinese phrases, and proposed a 
novel sEMG based silent speech recognition system using 
up-to-date feature extraction method and deep learning 
algorithm. Series of experiments on convolutional network 
based deep learning architectures and different features 
extraction methods were conducted. By being tested on 
designed dataset, our research provided a communication 
platform for the elderly, especially those with speech disorders. 
The main contributions of our research include： 

i.  Proposed a novel deep learning architecture named 
Parallel-Inception CNN for large dataset classification and 
recognition, and achieved satisfying performance. 

ii. Extracted log Mel frequency spectral coefficients 
(MFSCs) from sEMG signals and carried out comparisons 
with several commonly used features.  

iii. Designed the largest Chinese dataset used in sEMG 
based silent speech recognition studies, containing 100 classes 
of daily-life related demands for target users, and collected 
sEMG data from fourteen subjects. 

iv. Extended the application scenarios of sEMG based 
silent speech recognition. 

Parallel-Inception CNN Approach for Facial sEMG based Silent 
Speech Recognition 

Jinghan Wu, Tao Zhao, Yakun Zhang*, Liang Xie, Ye Yan, and Erwei Yin 

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 554



  

II. MATERIALS AND METHODS 

A. Dataset Design and Acquisition 
We designed a dataset for our target users based on four 

kinds of demands in daily life. There were three to five 
Chinese characters in each demand (eighteen pieces 
containing three characters, forty-eight pieces containing four 
characters and thirty-four pieces for five characters, with an 
empty demand added in the end of the corpus when collecting 
sMEG signal data), covering a total of 190 different Chinese 
characters. Detailed contents could be divided into four 
aspects, from physiological demands (such as I’m hungry) to 
medical care requirements like I need to take medicine and my 
leg aches. We took some daily entertainments (e.g., I want to 
listen to music) into consideration, as well as social demands 
like send text message for me. As far as we knew, our dataset 
was the largest Chinese dataset for sEMG based silent speech 
recognition studies, and it was expected to cover as much 
potential needs for the elderly as possible. 

Based on the contents of designed dataset, we carried out 
the data acquisition experiments. The sEMG data was 
captured from six positions of the facial and neck speech 
production related muscles, i.e., mentalis, risorius, levator 
labii superioris, anterior belly of the digastric, myhyoid and 
platysma. The device we used for sEMG signal amplification 
and acquisition was NSW308M bipolar EMG system with 
disposable Ag/AgCl surface electrodes collecting 
physiological signals. 

A screen randomly displayed a phrase in the corpus and 
sustained for 2 seconds when collecting data. In particular, the 
subjects uttered Chinese phases in corpus, and the data was 
collected from fourteen (seven male and seven female subjects, 
aged from 23 to 28, with a mean age of 24.72) normal subjects 
manually, with Mandarin as their mother language. Each 
subject was asked to utter the phrase in subvocal mode during 
the period that it was indicated on screen, and the experiment 
system recorded and saved the real-time sEMG signals from 
the movement of those muscles simultaneously. The whole 
experimental procedure was approved by the Institutional 
Review Board. The informed consent form was given to each 
subject and signed before experimental procedure. All the 
phrases in the corpus were spoken once in a session. There 
were 140 sessions in total, including 14,000 pieces of sEMG 
data, as all the subjects were required to repeated 10 sessions. 

B. Data Pre-processing 
 After the online signal collection, the raw sEMG data was 

further recorded at the sampling rate of 1000 Hz. We took 
some simple filters to improve the signal to noise ratio (SNR) 

before sEMG data could be used for feature extraction and 
recognition. A Butterworth notch filter of 50 Hz was first 
adopted for 50 Hz power frequency noise removal. As the 
main frequencies of effective sEMG signals were distributed 
at the range of 5-500 Hz, especially in the range of 10-400 Hz 
[15], we used a Butterworth bandpass filter with 10-400 Hz to 
obtained the most effective part of the sEMG signals.  

C. Silent Speech Recognition System 
Fig 2 shows a block diagram of proposed sEMG-based 

Chinese silent speech recognition system. In this study, the 
recognition system was consisted of five components, 
including sEMG data acquisition, data pre-processing, feature 
extraction, model training with labels and recognition in 
testing. We studied and tried different feature extraction 
methods, as well as recognition algorithms to improve the 
overall performance of our speech recognition system, 
carrying out comparative experiments and selected the best 
solution for our original purpose of providing a 
human-machine interface for the elderly in need. Detailed 
information for these two parts is demonstrated below. 

D. Feature Extraction Methods 
Surface electromyography signal is non-stationary and 

stochastic, varying greatly over time. Therefore, it is an 
essential step to extract short-term features from sEMG 
signals before modelling and recognition. We dropped the 
beginning 250 ms of the filtered sEMG signals as a reaction 
period of each subject. A sliding time window with fixed 
length of 200 ms was used to extract four of time and 
frequency domain features, i.e., Mean Absolute Value 
(MAV), Variance (VAR), Mean Frequency (MNF) and 
Wavelet Transform (WT). It moved 50 ms forward each time, 
thus we obtained a dimension of 32 for each feature and these 
four features were normalized and combined to form a new 
feature vector named TFD4 with dimension of 128 for each 
channel of sEMG signals. 

Apart from TFD4, Mel frequency cepstral coefficient 
(MFCC) and log Mel frequency spectral coefficient (MFSC, 
also known as logarithmic filter-bank energies) would also be 
calculated as different measures of signal features. Mel 
filter-bank filtering was used in the extraction of these two 
features, considering the auditory characteristics of human.  

 
Figure 1.  Surface electrode used to collect sEMG signal data and 

display of electrode positions 
 
 

 
Figure 2.   Pipeline of silent speech recognition system  
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MFSC, on the other hand, omitted the DCT process in MFCC 
feature extraction and had relatively higher dimension. As far 
as we knew, it was the first time that MFSC features 
implemented in sEMG based silent speech recognition. 
Although it was originally proposed for acoustic speech 
recognition, we would like to confirm whether MFSC was 
appropriate to represent sEMG signal characteristics in this 
paper.  

For MFCC features, we implemented 36 frames, 12 Mel 
filters, first order difference and second order difference of 
Mel filters to form a 36x36 input dimension. For MFSC, we 
implemented 36 Mel filters and 36 frames to obtain the input 
features of each channel.  

E. PICNN Architecture 
Convolutional neural network (CNN) has gained 

increasing popularity in image and signal processing tasks. 
The original architecture of CNN was firstly built by Yann 
LeCun in 1988, called LeNet [16], having 7 layers in total. 
With the development of deep learning algorithms, VGGNet 
[17] attracted much attention for its deep structure and 
outstanding performance in extracting features from the input 
data. The Inception (or GoogLeNet) [18] was developed by 
Google in 2015. It employed a new element called Inception 
module, from which we saw potential of implementation in 
sEMG based speech recognition. We came up with our own 
model based on Inception CNN, a novel architecture that 
designed and proposed in this paper, named 
Parallel-Inception CNN (PICNN). 

In Parallel-Inception CNN, the input features were 
parallel processed based on their channels as can be seen in 
Fig 3. Filters with different sizes were employed and 
combined to form one inception module for each channel and 
perform convolution operation simultaneously. In each 
inception module, filters with size 1x1, 3x3 and 5x5 were 
used here and the number of filters with each size was 32. All 
the six modules performed convolution in parallel and then 
they were concatenated and put into the rest part of a common 

convolutional neural network. The idea of designing parallel 
convolution at the input of network was based on the fact that 
experimental data were collected by electrodes of six 
channels upon different facial muscles, and the distribution of 
the signal from each channel was mainly related to the muscle 
movements during speech. In parallel convolution, the 
parameters of convolution kernel used in each channel were 
different after training, which could obtain the data feature of 
each independent channel more effectively and improve the 
representation ability of the network. 

III. EXPERIMENTS AND DISCUSSIONS 

A.  Model Training Strategies  
For more efficient model training, Mini-Batch Gradient 

Descent was adopted for the parameter update of neural 
networks during training process. Adam optimizer and 
learning rate decay were also implemented here for quicker 
convergence and more stable parameter refresh. Batch 
normalization had been added to each activation layer in 
proposed recognition model to handle the fluctuations of layer 
parameters during training and testing. Dropout was used to 
avoid overfitting, neurons with a percentage of 25% would be 
randomly dropped to improve the generalization of our model.  

The whole dataset collected and pre-processed in above 
sections was shuffled randomly. Then 5-fold cross-validation 
was applied. When the recognition rate kept steady after 500 
epochs of training, we stopped the process. 

B. Experiment Results and Discussions 
The average recognition accuracies using different 

features were recorded in Table II. Recognition system with 
MFCC or MFSC features achieved 5.58% and 19.2% higher 
classification accuracy, compared to that using TFD4 
respectively, which indicated that MFCC and MFSC features 
kept more original characteristics and trends in raw sEMG 
data. On the other hand, MFSC features performed better than 
MFCC features and reached the best recognition accuracy of 
88.44%, which proved the effectiveness of MFSCs in sEMG 
based silent speech recognition. 

TABLE I.  TIME AND FREQUENCY DOMAIN FEATURES USED HERE 

Feature Basic formulation 

Mean Absolute 
Value (MAV) 

 

Variance (VAR) 
 

Mean 
Frequency 

(MNF)  
Wavelet 

Transform 
(WT)  

Parameter 
definition 

x(i): time series 
k: the kth time window 

W: length of sliding time window  
fi: value of the ith frequency  

Pi: power spectrum density of the ith frequency 
a and τ: wavelet parameters 

 

 
 

Figure 3.   Architecture of proposed Parallel-Inception CNN 
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Apart from PICNN, three CNN architectures were tested, 
i.e., original architecture (denoted as CNN), Inception CNN 
and VGG16, and the results were recorded in Table III. The 
implementation of parallel inception module was proved to 
be more efficient in recognition and classification, with a rise 
of 4.09% in recognition accuracy than using VGG16. 
According to the accuracy summary in two experiments, the 
proposed Parallel-Inception CNN was more suitable for 
speech recognition on the large dataset we collected and kept 
much space for further study, according to the experiment 
results listed here. 

During dataset generation, we also noticed the 
physiological differences among subjects. We compared all 
the 14 subjects from aspect of gender in Table IV. 
Interestingly, a better recognition performance was achieved 
by using data collected from male subjects. As the subjects 
were of similar ages and health conditions, further analysis 
would be conducted from individual aspects to see how they 
affected the recognition result. 

 

IV. CONCLUSIONS AND FUTURE WORK 

Our newly designed Parallel-Inception CNN (PICNN) 
model achieved an average recognition accuracy of 88.44% 
for a 100-class dataset collected by our own in this paper. The 
performance of proposed PICNN surpassed state-of-the-art 
convolutional architectures on our dataset. By being tested 
with different feature extraction methods, the best recognition 
result of our silent speech recognition system was achieved.  

We are going to enlarge our dataset by inviting more aged 
subjects and patients to participate in the data collection. The 
dataset will be processed for more researches and open-access 
in the future. Also, cross-subject experiments will be carried 
out to further validate the robustness of proposed method and 
analyze the differences brought by subjects. 

 

REFERENCES 
[1] Green, Phil, et al. “Automatic speech recognition with sparse training 

data for dysarthric speakers.” Eighth European Conference on Speech 
Communication and Technology. 2003. 

[2] Schultz, Tanja, et al. “Biosignal-Based Spoken Communication.” 
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 
vol. 25, no. 12, 2017, pp. 2257-2271. 

[3] Sugie, Noboru, and Tsunoda, Koichi. “A Speech Prosthesis Employing 
a Speech Synthesizer-Vowel Discrimination from Perioral Muscle 
Activities and Vowel Production.” IEEE Transactions on Biomedical 
Engineering, no. 7, 1985, pp. 485–490. 

[4] Morse, Michael S., and Edward M. O'Brien. “Research summary of a 
scheme to ascertain the availability of speech information in the 
myoelectric signals of neck and head muscles using surface 
electrodes.” Computers in biology and medicine, vol. 16, no. 6, 1986, 
pp. 399-410. 

[5] Srisuwan, Niyawadee, et al. “Comparison of Feature Evaluation 
Criteria for Speech Recognition Based on Electromyography.” Medical 
& Biological Engineering & Computing, vol. 56, no. 6, 2018, pp. 
1041-1051. 

[6] Mendes Junior, José Jair Alves, et al. “Analysis of Influence of 
Segmentation, Features, and Classification in SEMG Processing: A 
Case Study of Recognition of Brazilian Sign Language Alphabet.” 
Sensors (Basel, Switzerland), vol. 20, no. 16, 2020, p. 4359. 

[7] Zhang, Ming, et al. “Inductive conformal prediction for silent speech 
recognition.” Journal of Neural Engineering, 2020. 

[8] Kapur, Arnav, et al. “AlterEgo.” 23rd International Conference on 
Intelligent User Interfaces, 2018, pp. 43-53. 

[9] Meltzner, Geoffrey, et al. “Silent Speech Recognition as an Alternative 
Communication Device for Persons With Laryngectomy.” IEEE/ACM 
Transactions on Audio, Speech, and Language Processing, vol. 25, no. 
12, 2017, pp. 2386-2398. 

[10] Al-Timemy, Ali H, et al. “Improving the Performance Against Force 
Variation of EMG Controlled Multifunctional Upper-Limb Prostheses 
for Transradial Amputees.” IEEE Transactions on Neural Systems and 
Rehabilitation Engineering, vol. 24, no. 6, 2016, pp. 650-661. 

[11] Jong, N. S., M. Kiatweerasakul, and P. Phukpattaranont. “Channel 
Reduction in Speech Recognition System based on Surface 
Electromyography.” 15th International Conference on Electrical 
Engineering/Electronics, Computer, Telecommunications and 
Information Technology (ECTI-CON), 2018. 

[12] Zhang, M., et al. “Feature selection of mime speech recognition using 
surface electromyography data.” Chinese Automation Congress (CAC), 
2019. 

[13] Rameau, Anaïs. “Pilot Study for a Novel and Personalized Voice 
Restoration Device for Patients with Laryngectomy.” Head & Neck, 
vol. 42, no. 5, 2019, pp. 839-845. 

[14] Ye, H., et al. “Attention Bidirectional LSTM Networks Based Mime 
Speech Recognition Using sEMG Data.” IEEE SMC 2020, 2020. 

[15] Politti, Fabiano, et al. “Characteristics of EMG frequency bands in 
temporomandibullar disorders patients.” Journal of Electromyography 
and Kinesiology, 2016, pp. 119-125. 

[16] Lecun, Y., et al. “Gradient-based learning applied to document 
recognition.” Proceedings of the IEEE, vol. 86, no. 11, 1998, pp. 
2278-2324. 

[17] Simonyan, Karen, and Andrew Zisserman. “Very Deep Convolutional 
Networks for Large-Scale Image Recognition.” IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), 2014. 

[18] Szegedy, Christian, et al. “Going Deeper with Convolutions.” IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), 
2015, pp. 1-9. 

TABLE III.  RECOGNITION ACCURACY USING DIFFERENT DEEP 
LEARNING ALGORITHMS 

Classifier Training accuracy Testing accuracy 
Using MFSC features 

CNN 97.94 85.22 
VGG16 98.50 84.35 

Inception 98.47 87.25 
Parallel-Inception 

CNN 96.79 88.44 

 

TABLE IV.       RECOGNITION DIFFERENCES REGARDING SUBJECT 
GENDER 

Gender (Number 
of subjects) 

Training accuracy Testing accuracy 
Using MFSCs and  

Parallel-Inception CNN 
Male (7) 98.37 90.95 

Female (7) 97.85 86.93 
 

TABLE II.  RECOGNITION ACCURACY USING DIFFERENT 
FEATURES 

Features Training accuracy Testing accuracy 
Using Parallel-Inception CNN model 

TFD4 73.03 69.24 
MFCC 89.76 74.82 
MFSC 96.79 88.44 
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