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Abstract— Challenges in the field of retinal prostheses moti-
vate the development of retinal models to accurately simulate
Retinal Ganglion Cells (RGCs) responses. The goal of retinal
prostheses is to enable blind individuals to solve complex, real-
life visual tasks. In this paper, we introduce the functional
assessment (FA) of retinal models, which describes the concept
of evaluating the performance of retinal models on visual
understanding tasks. We present a machine learning method
for FA: we feed traditional machine learning classifiers with
RGC responses generated by retinal models, to solve object and
digit recognition tasks (CIFAR-10, MNIST, Fashion MNIST,
Imagenette). We examined critical FA aspects, including how
the performance of FA depends on the task, how to optimally
feed RGC responses to the classifiers and how the number
of output neurons correlates with the model’s accuracy. To
increase the number of output neurons, we manipulated input
images - by splitting and then feeding them to the retinal model -
and we found that image splitting does not significantly improve
the model’s accuracy. We also show that differences in the
structure of datasets result in largely divergent performance of
the retinal model (MNIST and Fashion MNIST exceeded 80%
accuracy, while CIFAR-10 and Imagenette achieved ∼40%).
Furthermore, retinal models which perform better in standard
evaluation, i.e. more accurately predict RGC response, perform
better in FA as well. However, unlike standard evaluation, FA
results can be straightforwardly interpreted in the context of
comparing the quality of visual perception.

Index Terms— retinal models, functional assessment, machine
learning, retinal prosthesis, visual recognition

I. INTRODUCTION

The increasing knowledge of visual systems along with
technological advances give novel results in prevention,
limitation or even treatment of visual impairment [1], [2].
However, retinal degenerative diseases, such as age-related
macular degeneration (AMD) and retinitis pigmentosa cannot
be effectively treated with surgery or medication [3]. Retinal
prosthesis devices aim to restore vision in such patients,
by translating visual stimuli to electrical stimulations that
activate the retina. Then, the retina transmits neural signals
to the visual centers of the brain, which are responsible for
visual perception [4].

Although current retinal implants have managed to restore
certain visual functionalities, there are several technological
and biological challenges to be overcome. In particular,
implants need to simulate natural retinal processing, by
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incorporating models that faithfully predict the physiological
firing of retina cells to visual stimuli [3], [4]. Towards
this direction, the development of retinal models aims to
simulate the biological neural processing in the retina, by
interpreting images to retinal responses. Nowadays, advanced
retinal models incorporate computer vision techniques [5],
[6] and, more recently, state-of-the-art models use Convolu-
tional Neural Networks (CNNs) [1], [2].

This paper proposes the functional assessment (FA) of
retinal models, which describes the concept of evaluating
the performance of retinal models on visual understand-
ing tasks. This constitutes a divergence from the currently
common practice of evaluating a retinal model comparing
the similarity of model-generated and ground-truth RGC
responses. Motivation for FA stems from the observation that
visual prostheses aim to restore the capacity of individuals
to comprehend their visual environment, thus we should
directly evaluate our models on such tasks. The need for
FA of prosthetic (i.e., acquired through prostheses) vision
has been raised in the literature [7]; FA has been applied to
evaluate vision in implantees [8] and in augmented-reality
interventions in people with severe vision impairment [9].
FA should be focused on the visual functions that seem most
important to the blind: mobility, face recognition and reading
[3]. In this context, we develop a machine learning method
for FA. Using images from well-established computer vision
datasets (Table I), we feed traditional classifiers with RGC
responses produced by the retinal model, in order to solve
object and digit recognition tasks. Our goal is to explore
whether retinal models that faithfully reproduce retina output
show improved performance in visual understanding tasks
and also, draw conclusions on the quality of prosthetic vision
that is attainable by assessing the performance of retinal
models directly on such tasks.

II. METHODS

Fig. 1. Functional assessment pipeline.

A. Functional assessment pipeline

Functional assessment pipeline (Fig. 1) includes image
preprocessing (Steps II-A.1, II-A.2, II-A.3, II-A.4), feeding
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the retinal model with images (Step II-A.5), extracting and
processing RGC responses (Steps II-A.6, II-A.7, II-A.8) and
finally, feeding them to the classifiers. All steps, together
with the corresponding design decisions, are analyzed below.

1) Input: Transform each image from rgb to grayscale,
only for CIFAR-10 and Imagenette. Then, normalize images
in range (0, 1) and finally, reshape each image to (50, 50, 1)
to match the input size of the retinal model.

2) Data augmentation: Implement data augmentation as
a standard process to improve model training. Two of the
following transformations are applied to each image: rotate
45o or −45o, use gaussian noise of scale = 0.1∗255 or scale
= 0.2 ∗ 255, crop images by 5 or 7 pixels from each side,
translate images over x or y axis by a percentage ranging
from −10% to +10% of the image size. Parameter values
are selected, so as to produce different perspectives of the
same image and, at the same time, preserve the object for
detection inside the frame of the image. Data augmentation
is implemented using imaug library1.

3) Split: Split image in p2 parts, where p = 1, 2, 3, 4 and
reshape the size of each part to (50, 50). For p = 1, we
assume that the image is not split at all. Motivation behind
image splitting is to artificially increase the limited number
of output neurons (60 in our case) provided by the retinal
model, so as to increase the performance of the classifiers.

4) Adjust: The goal of this step is to create a temporal
dataset, as described in Section II-C. It should be decided
whether to repeat each image five times and get the full
response trend for t = 0 ... 50 ms (Adjust=yes) or have one
row per image with ten image repetitions (see red frames in
Fig. 2) and get a snapshot of the response at t = 100 ms
(Adjust=no)2.

5) Feed: The retinal model, described in Section II-B,
is fed with images and predicts retinal responses for 60
neurons.

6) Valid: In this step, the receptive fields of the neurons
are identified using STA Analysis [10]. If STA manages to
compute the center of the receptive field for a neuron, then
we consider this neuron as valid. For the retinal model used,
only 12 valid neurons are found. Therefore, it should be
decided whether to keep all 60 neurons (Valid=no) or only
the 12 valid ones (Valid=yes).

7) Combine: If adjustment was previously implemented,
there are five arrays of RGC responses for every image,
which are combined in one array, by applying elementwise
min or max transformation.

8) Concatenate: If image splitting is implemented in Step
II-A.3, there is one array of 60 RGC responses for every part
of the split image. These arrays are then concatenated to one
larger array of size a ∗ (p2), where a = 60 (or a = 12 if
valid neurons are selected) and p = 2, 3, 4. The set of final
arrays is the training dataset for the classifiers and thus, the
size of final arrays represents the number of features for the
classifiers.

1https://github.com/aleju/imgaug
2We found that the retina response at t=100 ms has high variance and

thus, it could better distinguish different objects (data not shown).

B. Retinal Model

We use a 3-layer CNN retinal model [2] that was trained
to predict response rates for sixty simultaneously recorded
RGCs. This model was chosen, as it can effectively predict
retinal responses to natural images and, being trained with
natural images, it can model a wide range of retina’s bi-
ological properties. To train the retinal model, we used an
image dataset consisting of 4890 grayscale natural images of
size 50x50 pixels and the recorded retinal responses (retinal
responses were recorded at Prof. E. Fernandez lab) [1].
Each frame, corresponding to 10 ms of visual stimulus, was
projected onto the retina of a mouse for a total of 50 ms.
Thus, each frame was repeated five times and the whole
dataset consists of 24450 natural images of total duration
244.5 s.

C. Temporal dataset

The response of RGCs depends not only on the current
stimulus, but also on preceding stimulations. To model this
temporal dependency, a temporal dataset is created. For each
image being projected onto the retina, we keep track of
the history of images projected before. The total number of
frames used -the actual image projected onto the retina (at
t = tn) plus the additional image frames accounting for the
stimulus history- is called temporal_interval. Every row in
the temporal dataset represents an input sample to the retinal
model. The number of image repetitions (n) represents the
duration (n∗10 ms, given that each frame corresponds to 10
ms of visual stimulus) that the retina is exposed to a specific
image (Fig. 2).

Fig. 2. A clipping of the temporal dataset. Every row in the temporal dataset
represents an input sample to the retinal model and it has temporal_interval
frames (here, temporal_interval = 30). In each row, the number of image
repetitions (n = 1, 2, 3, 4, 5) represents the time that the image has been
projected onto the retina (∆t = 10, 20, 30, 40, 50 ms respectively). Black
frames represent the intermediate stage between the alternation of images,
where no light is projected onto the retina.

D. Design of simulations

We conducted simulations for all different combinations
of design decisions during data preprocessing. In particular,
we trained four different classifiers: MLP_500_100 (size of
input layer = 500, size of hidden layer = 100), MLP_n_n/2
(size of input layer = n, size of hidden layer = n/2, where n =
number of features), SVM (kernel=‘rbf’) and Random Forest
(max_features=12). Hyperparameters were chosen based on
the performance of classifiers in initial simulations. We also
chose four datasets (Table I): CIFAR-10, MNIST, Fashion
MNIST and Imagenette with ten different classes (ten object
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categories) each, so as to compare classification tasks with
equal number of classes. Then, 10000 samples from each
dataset were augmented, creating in this way 30000 sam-
ples, which were randomly divided according to 70%/30%
train/test split. For each simulation, we trained each classifier
ten times and we calculated the mean and standard deviation
of accuracy. We repeated all simulations for two different
parametrizations of the CNN retinal model (Section II-B):
RetModel1 with temporal_interval=30 and RetModel2 with
temporal_interval=40.

TABLE I
DESCRIPTION OF THE DATASETS USED IN SIMULATIONS.

Dataset Image Type of # Classes
size classification

CIFAR-10 [11] 32x32 objects 10
MNIST [12] 28x28 digits 10

Fashion MNIST [13] 28x28 clothing items 10
Imagenette 3 variable objects 10

III. RESULTS AND DISCUSSION

A. Preprocessing decisions for functional assessment

Initially, we performed simulations with CIFAR-10 and
MNIST, splitting images in None, 4, 9 parts (p = 1, 2, 3
respectively) for both Valid=yes/no (Step II-A.6). Then, we
split images of the two more complex datasets, Fashion
MNIST and Imagenette, in None, 4, 9, 16 parts for only
Valid=no. In Fig. 3, we see the percentage differences be-
tween 60 neurons (Split=None) and max splitting (Split=9
or Split=16). We observe that image splitting (i.e. using
more than 60 neurons) increases the performance mostly in
MNIST (>10%) and less in Fashion MNIST (<10%), while
it does not further improve performance in CIFAR-10 and
Imagenette. This can be explained by structural differences
mentioned in Section III-B. We further assume that, by
splitting images in too many parts, the objects are difficult to
be recognized due to oversegmentation and so, performance
does not significantly improve with splitting. In addition, if
we compare plots with Adjust=yes and those with Adjust=no
(Fig. 3), we see that, keeping a snapshot of the retina
response at a critical t (at which retina response has high
variance), produces similar results as keeping the full trend of
the retina response over time. By keeping only the critical re-
sponses, we can also save significant computational resources
and time. Finally, we tested a set of different classifiers
and we found that the type of classifier is not an important
factor -our conclusions remain unchanged, irrespective of the
classifier we use- even if the Random Forest had the most
efficient and consistent performance across the simulations
(Fig. 3).

B. Functional assessment performance on different datasets

Fig. 4 compares the maximum performance of classifiers
between different visual understanding tasks, i.e. different

3Available at https://github.com/fastai/imagenette/

datasets (Table I). CIFAR-10 and Imagenette achieve ∼40%
accuracy, while MNIST and Fashion MNIST exceed 80%.
We see that image resolution is not a crucial factor in the
model’s performance. Although Imagenette was compared
to CIFAR-10 to test images with higher resolution, it per-
forms only slightly better -and in some cases- worse than
CIFAR-10. Furthermore, MNIST and Fashion MNIST have
twice the accuracy of CIFAR-10 and Imagenette, even if
they consist of images with lower resolution. Significant
differences in performance between MNIST/Fashion MNIST
and CIFAR-10/Imagenette can be explained, if we take
a closer look at the structural differences between these
datasets. Images in both MNIST and Fashion MNIST have
a dark background with the object for classification situated
in the middle. On the other hand, CIFAR-10 and Ima-
genette consist of real-life images, with unclear background-
foreground segregation and more complex structures. This
plays a key role, if we additionally consider the retina
only reacts in spatiotemporal changes among different image
frames [14]. This retina’s property favors both MNIST and
Fashion MNIST, where only the object under classification
changes over different dataset images.

Fig. 3. Sensitivity plots correlating the accuracy of classifiers (CIFAR-10,
MNIST, Fashion MNIST, Imagenette) with the number of neurons used as
input (n_features), for both Adjust=yes/no (Step II-A.4).

C. Functional assessment of different retinal models
Finally, functional assessment is applied in order to

compare the performance of two different retinal models,
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Fig. 4. Comparison of the maximum performance of classifiers between
datasets.

RetModel1 and RetModel2 (Section II-D). Results show that
the retinal model with the lowest mean squared error (MSE)
(i.e. the one being closer to the biological retina) performs
better across the whole range of functional simulations.
Therefore, it seems that functional assessment is in accor-
dance with standard evaluation techniques. Furthermore, by
functionally assessing a model, we get a direct and more
easily interpretable estimate of how well an implantee may
perform in a visual task of interest.

D. Limitations and future directions of functional assessment

During the development of this work, several limitations
were encountered. We used a retinal model that has been
trained to predict only a limited number of RGC responses
(Section II-B). However, a higher number of RGC responses
could better represent complex images and provide classifiers
with a richer set of features to solve more efficiently real-
life visual tasks. Therefore, there is a need to increase the
number of RGC responses given by retinal models, either by
using improved experimental methods to collect the data or
using a different architecture for the retinal model.

Another limitation arises from choosing to process retinal
responses, which are one-dimensional firing-rate arrays, with
traditional machine learning classifiers. From a biological
perspective, the visual pathway includes neural processing
both in the retina and mainly, in the brain’s visual centers,
which are responsible for higher visual functionalities, like
object recognition. Literature indicates that the brain’s visual
centers can be effectively modeled by deep neural archi-
tectures [15]. Deep learning networks have been also used,
in high-impact research on biological vision, to model the
ventral visual stream in order to elucidate retinal mechanisms
[16]. Taking those insights into consideration, we suggest
that future efforts for FA should be focused on combining
end-to-end deep learning architectures to model both the
retina and the rest of the visual pathway. Moreover, we may
train on tasks with unsupervised methods, which produce bi-
ologically plausible ventral visual system models and follow
bio-plausible sensory learning procedures [17]. Given also
the interpretable nature of FA, future development involves
explainable models, providing insights into the relationship
between image properties and retina output [18].

IV. CONCLUSION

In this work, we introduced the concept of functional
assessment and designed a machine learning framework for
it. We investigated how retinal models, trained to faithfully
reproduce retina output, perform in visual understanding
tasks. We show that FA is comparable with the established
evaluation method; yet, FA provides a direct and easily
interpretable way of assessment, based on the performance
on visual tasks. We also found that performance in FA is
closely dependent on the given task. Finally, image splitting,
as a way to increase the number of output neurons, does
not significantly improve accuracy; still, restoring functional
vision requires that retinal models interpret images to a larger
number of RGC responses.
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