
 

 

 

 
 

Abstract— This study presents a novel multi-modal 

framework for fetal heart rate extraction, which incorporates 

wearable seismo-cardiography (SCG), gyro-cardiography 

(GCG), and electrocardiography (ECG) readings from ten 

pregnant women. Firstly, a signal refinement method based on 

empirical mode decomposition (EMD) is proposed to extract the 

desired signal components associated with fetal heart rate 

(FHR). Afterwards, two techniques are developed to fuse the 

information from different modalities. The first method, named 

early fusion, is intended to combine the refined signals of 

different modalities through intra-modality fusion, inter-

modality fusion, and FHR estimation. The other fusion 

approach, i.e., late fusion, includes FHR estimation and inter-

modality FHR fusion. FHR values are estimated and compared 

with readings from a simultaneously-recorded 

cardiotocography (CTG) sensor. It is demonstrated that the best 

performance belongs to the late-fusion approach with 87.00% of 

positive percent agreement (PPA), 6.30% of absolute percent 

error (APE), and 10.55 beats-per-minute (BPM) of root-mean-

square-error (RMSE). 

Clinical Relevance— The proposed framework allows for the 

continuous monitoring of the health status of the fetus in 

expectant women. The approach is accurate and cost-effective 

due to the use of advanced signal processing techniques and low-

cost wearable sensors, respectively. 

I. INTRODUCTION 

Stillbirth, defined as the death of a fetus after 24 weeks of 

gestational age, is a critical public health problem [1]. 

Statistics indicate that nearly 2.5 million stillbirths occur 

globally every year, motivating the need for proactive fetal 

monitoring to reduce fetal mortality [1]. An important vital 

sign to monitor for the wellbeing of a fetus is the fetal heart 

rate (FHR), which should fall within the range of 120-160 

beats per minute (BPM) from the 24th week of gestation [2]. 

Techniques for continuous monitoring of FHR could help 

expectant mothers be informed of the health state of the fetus, 

and undergo necessary intervention procedures as soon as 

FHR goes beyond the standard range, posing serious health 

risks to the fetus. 

Ultrasound cardiotocography (CTG) enables the 

continuous monitoring of fetal heart sound through 

auscultation, and provides obstetricians with information 

regarding FHR and uterine contractions [3]. CTG requires 
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pregnant individuals to visit the clinic intermittently. Despite 

being a non-invasive modality, CTG has not conclusively 

been proven to be a safe technology as it irradiates the fetus 

with ultrasound frequencies [4]. Furthermore, it is prone to 

missing information due to fetal movement during monitoring 

[5]. Other than CTG, FHR monitoring is carried out through 

fetal electrocardiography (fECG) by placing low-noise ECG 

electrodes on the abdomen of the mother [5]. Consequently, a 

mixture of maternal ECG (mECG) and fECG is achieved 

which is named abdominal ECG (aECG). Over the past 

decade, a huge amount of research, primarily based on blind 

source separation (BSS) [6], [7] and adaptive filtering [8], [9], 

has been dedicated to extracting fECG imposed by noise 

components with signal-to-noise ratio (SNR), occasionally as 

low as -20 dB [10]. 

Recently, wearable seismo-cardiography (SCG) and gyro-

cardiography (GCG) have been widely employed for 

wearable heart monitoring and disease detection. Our 

research group has reported on the application of SCG and 

GCG modalities on FHR estimation [11], where three inertial 

sensors were used to measure the abdominal movements 

caused by fetal heartbeats. Although the potentiality of FHR 

extraction was demonstrated, the reported PPA was 75.20% 

since the vibrations caused by fetal cardiac activity may not 

fully transfer to the abdomen, especially from the 28th to the 

37th week of gestation due to the greasy layer called vernix, 

which dampens the vibrations produced by the heartbeat of 

fetus  [12].  

In this work, a multi-modal framework is developed where 

ECG and SCG/GCG modalities are employed in a fusion-

based context for FHR extraction. It is assumed that data 

fusion among these modalities would enhance the appearance 

of fetal heartbeat components. The proposed framework 

employs off-the-shelf sensors, not necessarily designed for 

low-noise measurements. To the best of our knowledge, this 

is the first study addressing the fusion between ECG and 

SCG/GCG modalities for fetal heart rate estimation. The 

organization of the paper is as follows: In Section II, the 

experimental setup, the pre-processing, and the FHR 

extraction methodology are explained. Experimental results 

are discussed in Section III, and the paper is concluded in 

Section IV. 
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II. METHODOLOGY 

In the following sub-sections, the experimental setup, 

signal processing, and sensor fusion techniques are explained 

in detail. 

A. Experimental Setup and Measurement Protocols 

 Ten normal healthy pregnant women participated in this 

study and fetal heart rates were measured at the Department 

of Obstetrics and Gynecology at New York University 

Grossman School of Medicine (NYUGSM) after obtaining 

informed consent. The patients’ experimental protocol was 

approved by the Institutional Review Board (IRB) of 

NYUGSM under study number i18-00564. The subjects’ 

average (standard deviation) gestational age was 37.11 (2.56) 

weeks, with body mass index (BMI) falling within the range 

of 28.91±4.46 Kg/m2. Also, the average (standard deviation) 

age of the subjects was 32.8 (4.27) years old. Fig. 1 depicts 

the experimental setup.  

The subjects were asked to lie down on an examination 

table, shown in Fig. 1 (a), for 5 minutes in a supine position. 

Then, an inertial measurement unit (IMU) from Shimmer 

Sensing was secured around the top part of the subject’s 

abdomen using a band strap. The IMU sensor was used to 

record the rotational and linear vibrations of the abdomen. 

Furthermore, the electrodes of a four-lead ECG sensor were 

placed along the navel-to-chest direction as demonstrated in 

Fig. 1 (b). The layout of ECG electrodes (E1-E5) was 

designed such that they covered as many paths (purple 

arrows) on the abdomen as possible. According to Fig. 1 (b), 

the X, Y, and Z axes correspond to the directions along right-

to-left, top-to-bottom, and dorso-ventral, respectively. All 

sensors recorded the data at a sampling rate of 512 Hz. In 

addition, an ultrasound CTG machine was employed to record 

the ground-truth FHR. After the measurement, the recorded 

data was transferred to a computer for further processing. 

B. Signal Pre-processing and EMD Refinement 

 In order to remove the baseline wandering and motion 

artifacts from the recordings, ECG and SCG/GCG signals 

were filtered using a third-order zero-phase Butterworth 

band-pass filter with cut-off frequencies of 0.8-40 Hz and 0.8-

25 Hz, respectively. The achieved signals are assumed to 

contain components associated with fECG, mECG, and noise, 

which should be separated from one another. On the other 

hand, mechanical activities, i.e., SCG/GCG, are delayed 

compared to electrical activities, i.e., ECG, in the heart, 

provoking the need for spectral analyses rather than time-

domain methods. To this end, we designed an algorithm based 

on empirical mode decomposition (EMD), coined EMD 

refinement (EMDR), to keep those components that are 

highly correlated with fetal cardiac activities. EMDR starts 

with decomposing a signal into its intrinsic mode functions 

(IMFs), the top ones of which, carrying important information 

of the cardiac activity, are kept, whereas the remaining IMFs 

are discarded. In this work, the first six IMFs are kept as they 

comprise higher frequency components. Each IMFi is scored 

by a factor of 𝜉𝑖(𝑖 = 1,2,3,4, … ), which is defined as follows: 
 

𝜉𝑖 = (∑ |𝐴𝑖[𝑘]|2
⌊
3𝑁

𝑓𝑠
⌋

𝑘=⌊
2𝑁

𝑓𝑠
⌋

) / (∑ |𝐴𝑖[𝑘]|2𝑁/2
𝑘=1 ) ,  (1) 

 

where 𝐴𝑖[𝑘]  denotes the representation of i-th IMF in the 

spectral domain, 𝑁 shows the signal length, and 𝑓𝑠 implies the 

sampling frequency of the signal. The score for each IMF is 

determined based on the proportion of the information 

concentrated in a specific range to the total energy of the IMF. 

According to the Nyquist rate and assuming that the sample 

number 𝑘 =
𝑁

2
 in FFT domain corresponds to 𝑓 =

𝑓𝑠

2
 𝐻𝑧  in 

the frequency domain,  2𝑁/𝑓𝑠 and 3𝑁/𝑓𝑠 would imply 2 and 

3 Hz in the frequency scale, respectively. This means that the 

IMF’s are scored according to a frequency range, at which 

most of the energy of fetal FHR components, 120-160 BPM, 

exists. Thus, by scoring the IMF’s, they can be ranked based 

on their information of fetal cardiac activity. Hence, 

considering the top scores as 𝜉𝑗
̂  ( 𝜉̂

𝑗
> 𝜉̂

𝑗+1
) and their 

respective IMF’s as 𝐼𝑀𝐹̂𝑗 , the refined signal 𝑥̂  would be 

reconstructed by using the top four IMF’s out of six as 

follows: 
 

𝑥̂ = 𝜉̂
1

× 𝐼𝑀𝐹̂1 + 𝜉̂
2

× 𝐼𝑀𝐹̂2 + 𝜉̂
3

× 𝐼𝑀𝐹̂3 + 𝜉̂
4

× 𝐼𝑀𝐹̂4. (2) 
 

Hence, EMDR could improve the signal components at a 

certain frequency range. EMDR is applied on every channel 

of ECG, SCG, and GCG, turning the signals more suitable for 

the multi-modal signal fusions illustrated in Fig. 2. As shown 

in this figure, two fusion techniques are designed: early-

fusion (Fig. 2 (a)) and late-fusion (Fig. 2 (b)) as elucidated in 

the following sections. 
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Fig. 1. (a) The experimental setup for data collection: an adjustable bed, the 

wearable sensors, CTG machine, and band straps. (b) ECG electrodes and 
IMU layout on the pregnant abdomen; X, Y, and Z show the axes for IMU 

recordings.   
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Fig. 2. Fusion-based FHR extraction flow graphs: (a) Early fusion, (b) Late 

fusion. 
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D. Early-fusion FHR Estimation 

 In order to implement a meaningful fusion among the 

modalities, we employ the spectral contents of the signal since 

the nature of ECG, SCG, and GCG are different from one 

another in the time domain. Furthermore, having considered 

the signal refinement proposed above, the enhanced 

frequency components within the range of 2-3 Hz are deemed 

to contribute to a constructive effect in the spectral domain. 

The time-frequency (TF) representation of each channel is 

calculated by applying a Morse continuous wavelet transform 

(CWT) as defined below: 

Υ𝛲,𝜐(ω) = 𝑈(𝜔)𝑎𝛲,𝜐𝜔
𝛲2

𝜐 × exp (−𝜔𝜐), (3) 

where 𝑈(𝜔) , 𝛲2 , 𝜐 , and 𝑎𝛲,𝜐  characterize the unit step 

function, time-bandwidth product, symmetry of the Morse 

wavelet, and normalizing constants, respectively. In this 

study, the values of 𝜐 and 𝛲 are set to 4 and 120, respectively. 

Once the refined signals from each modality are transformed 

into their TF representation, the values of each TF are 

normalized to a zero-mean unit-variance distribution, i.e., 

~𝒩(0,1) . Then, the normalized TF’s are averaged within 

their respective modalities, normalized again, and averaged 

across the three modalities.  Indeed, the fusion operator 

generates a single TF characteristic that represents the 

combined information from the three modalities with an 

emphasis on the components within 2-3 Hz, which is relevant 

to fetal heart activities. An inverse continuous wavelet 

transform (ICWT) is then performed on the fused TF to 

convert it back to time domain. Subsequently, to obtain the 

FHR values, cepstrum is performed on the signal to calculate 

the lag at which the time-domain signal appears to have a 

higher energy. As the FHR value varies within the range of 

110-180 BPM throughout the entire experiment, the desired 

peak is to be detected within the corresponding lag values, 

i.e., 333-545 ms. Hence, FHR is calculated as follows: 
 

𝐹𝐻𝑅 (𝐵𝑃𝑀) =
60(𝑠𝑒𝑐𝑜𝑛𝑑)

𝑙𝑎𝑔 (𝑠𝑒𝑐𝑜𝑛𝑑)
. (4) 

 

E. Late-fusion FHR Estimation 

The late-fusion flow graph is shown in Fig. 2 (b). 

According to this structure, each modality undergoes a 

channel fusion procedure as described above. As such, ECG, 

SCG, and GCG channels are fused within their respective 

modalities separately. Once the fusion at each modality is 

performed, three TF representations corresponding to ECG, 

SCG, and GCG are obtained. Unlike the early-fusion 

technique, the TF associated with each modality is converted 

back to the time domain with no data fusion at this stage. 

Then, cepstrum is applied on each time-domain signal, and 

FHR values are estimated from each modality separately. 

Thus, three estimates of FHR are acquired through SCG, 

GCG, and ECG channels. Data fusion is then conducted on 

the three FHR estimates by averaging the values. In fact, the 

three modalities are assumed to introduce some amount of 

error in the FHR estimate values. Yet, late-fusion is meant to 

reduce the total error by moderating the FHR discordance 

among the sensors. This will be further discussed in the 

experimental results. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, the experimental results are presented and a 

comparison between the proposed techniques and those in 

literature is made.  

A. Performance Evaluation 

In order to evaluate the performance of the proposed 

methods, the signals are segmented into 10-second frames, 

from each of which FHR values are estimated. The estimate 

values are then compared with the ground-truth values, i.e., 

CTG readings, through three metrics called positive percent 

average (PPA), i.e., the percentage of time the proposed 

method generated a valid FHR within 10% of the readings 

from CTG, absolute percentage error (APE), and root-mean-

square error (RMSE). Table I summarizes the RMSE results 

for fusion-based and single-modality scenarios for the ten 

subjects, where single-modalities include signal refinement 

and channel fusion. According to Table I, late-fusion suggests 

the best performance among all by 10.55±2.10 BPM of 

RMSE, whereas early-fusion is reported by 12.47±2.38 BPM, 

indicating superior accuracy to the single-modality scenarios 

such as SCG, GCG, and ECG with 12.98±2.47, 12.60±1.76, 

and 12.60±1.96 BPM, respectively, where GCG introduces 

the least error. The difference in performance between early 

and late fusions results from the potentially destructive effect 

caused by the complex values of TF while fusing the sensors 

in early-fusion. Furthermore, for subjects 5 and 9, the best 

RMSE’s were achieved by the GCG modality and early-

fusion, respectively, although late-fusion performs more 

robustly in other cases. Fig. 3 makes a comparison of the APE 

TABLE I. RMSE OF ESTMATION BY MODALITY-ONLY AND FUSION-BASED 

METHODS 

Subject SCG GCG ECG Early 

fusion 

Late 

fusion 

1 12.07 11.69 12.65 12.37 9.52 

2 16.25 17.15 15.85 16.04 14.70 

3 13.10 12.01 14.22 12.01 11.30 

4 12.07 11.86 11.44 12.81 9.22 

5 17.31 12.34 13.64 14.16 12.54 

6 8.34 11.26 10.11 9.77 7.34 

7 14.62 14.20 14.91 16.43 12.65 

8 12.75 12.38 12.69 12.14 10.00 

9 12.74 12.54 9.85 9.42 9.68 

10 10.54 10.56 10.59 9.52 8.57 

Mean 

±std. 

(BPM) 

12.98 

±2.47 

12.60 

±1.76 

12.60 

±1.96 

12.47 

±2.38 

10.55 

±2.10 

 

 
Fig. 3. Performance of the proposed method and the sensor-alone scenarios: 

(a) APE, (b) PPA. 
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and PPA metrics. As illustrated in Fig. 3 (a) and (b), the late-

fusion model outperforms early-fusion as well as single-

modality settings by a margin of 1.00% and 17.00% in terms 

of APE and PPA, respectively. Unlike the RMSE values 

mentioned in Table I, PPA=71.00% and APE= 7.30% of 

early-fusion suggest better performances compared to the 

single-modality scenarios. The worst performance belongs to 

the SCG modality with 12.98 BPM, 7.70%, and 67.00% of 

RMSE, APE, and PPA, respectively. In summary, late-fusion 

offers a more robust and reliable estimation of FHR values. 

B. Comparison with Other Methods 

As the proposed framework leverages both abdominal ECG 

and SCG/GCG modalities, where CTG provides the ground-

truth value, it is compared with the three most similar 

wearable-based works in the literature. In [11], SCG/GCG are 

employed to extract the FHR, where CTG is used as the 

reference. In [13], FHR extraction is performed using a small 

AN24 sensor from Monica Healthcare, which was used to 

record fECG. Furthermore, a sensor fusion of phono -

cardiography (PCG) and fECG addresses FHR extraction in 

[14], with which the proposed method is compared. These 

works were selected for comparison since they leverage a 

partially-similar setup to ours, i.e., inertial sensors, abdominal 

ECG sensors, and a sensor fusion algorithm, respectively. 

Table II reports on the performance comparison between the 

proposed method and other works. As seen in Table II, the 

proposed late-fusion framework outperforms the other 

methods in the literature in terms of PPA by a large margin of 

4.00%, whereas in terms of RMSE, it suggests weaker 

performance than the fECG-based method (10.55 vs. 4.80 

BPM). This weaker performance stems from using 

commercial off-the-shelf ECG sensors in our setting. 

Furthermore, despite employing a single-IMU setting, the 

proposed method could estimate the FHR values more 

accurately than the triple-IMU-based framework in [11] 

(RMSE: 10.55 vs. 11.40 and PPA: 87.00% vs. 75.20%). The 

fourth column of Table II represents 95% confidence interval 

(CI) (lower bound, higher bound) for the difference between 

the reference and the estimates of FHR. This metric is only 

reported for the fusion algorithm in [14]. Comparing the 

proposed method and [14], it is concluded that most of the 

differences between the reference and the estimates of FHR 

in our method lie within a smaller range around zero, i.e., (-

1.9, -0.19), in comparison to [14], i.e., (-8.84, 8.24), implying 

higher confidence by the proposed method.    

IV. CONCLUSION 

This study addresses the fusion of fECG and inertial 

sensors to monitor FHR for the first time. The proposed 

framework benefits from an EMD-based signal refinement, 

which enhances fetal cardiac activity components in both 

ECG and SCG/GCG readings. Furthermore, two sensor 

fusion methods are designed to improve the accuracy of FHR 

estimation. A PPA of 87.00% demonstrates the efficiency of 

our approach for FHR extraction. Future studies include 

source separation methods to cancel the maternal components 

from both ECG and inertial readings. Furthermore, 

channel/sub-signal scoring will be added to each modality to 

select the channels/sub-signals indicating higher SNR values 

within the range of 2-3 Hz. Moreover, other patterns for ECG 

placement will be investigated, where some of them might 

potentially contribute to high-SNR fECG components. 
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