
  

  

Abstract— Functional magnetic resonance imaging (fMRI) is 
an extensively used neuroimaging technique to non-invasively 
detect neural activity. Data quality is highly variable, and fMRI 
analysis typically consists of a number of complex processing 
steps. It is crucial to visually assess images throughout analysis 
to ensure that data quality at each step is satisfactory. For fMRI 
analysis of the brain, there is a simple tool to visualize four-
dimensional data on a two-dimensional plot for qualitative 
analysis. Despite the practicality of this method, it cannot be 
directly applied to fMRI data of the spinal cord, and a 
comparable approach does not exist for spinal cord fMRI 
analysis. The additional challenges encountered in spinal cord 
imaging, including the small size of the cord and the influence of 
physiological noise sources, drive the importance of developing 
a similar visualization technique for spinal cord fMRI. Here, we 
introduce a highly versatile image analysis tool to visualize spinal 
cord fMRI data as a simple heatmap and to co-visualize relevant 
traces such as physiological or motion timeseries. We present 
multiple variations of the plot, data features that can be 
identified with the heatmap, and examples of the useful 
qualitative analyses that can be performed using this method. 
The spinal cord plot can be easily integrated into an fMRI 
analysis pipeline and can streamline visual inspection and 
qualitative analysis of functional imaging data.  
 

Clinical Relevance— Implementation of this data 
visualization method is a simple addition to spinal cord fMRI 
analysis that could be used to identify normal vs. abnormal 
signal variation in pathologies that impact the cord, such as 
spinal cord injury or multiple sclerosis. 

I. INTRODUCTION 

Functional magnetic resonance imaging (fMRI) is widely 
used as a non-invasive method to detect neural activity in the 
central nervous system. Blood-oxygenation level dependent 
(BOLD) contrast is a standard mechanism for detection of 
neural activity in fMRI and is based on neurovascular 
coupling: it relies on the change in blood flow and blood 
oxygenation that is the local hemodynamic response to 
increased neural activity [1-2]. Specifically, the change in 
relative concentrations of deoxygenated and oxygenated blood 
influence local T2* relaxation times, resulting in changes to 
the BOLD-weighted fMRI signal [2]. fMRI can be used to 
assess the health and function of the central nervous system by 
characterizing the response to a task or stimulus, or by 
measuring resting state activity.  

Although fMRI can provide valuable insights, there are 
still many challenges pertaining to data quality, noise, and 
artifacts. A technique developed for brain imaging visualizes 
fMRI data as a two-dimensional grayscale heatmap; timeseries 
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from brain tissues are plotted vertically from superficial gray 
matter to deeper cerebrospinal fluid (CSF) in the ventricles [3]. 
Additionally, in close proximity to these plots are traces such 
as those from head motion or a respiratory belt, used to 
visually identify any coincidence of signal variation and 
artifacts in the scan [3]. The fMRI community has realized the 
utility of these plots and analyzed BOLD signal changes with 
respect to head motion [4], for quality control [5-6], and 
compared data denoising approaches [7]. The integration of 
this visualization into analyses can greatly improve the holistic 
impression of fMRI data in the brain, qualitatively capturing 
the impact of artifacts, movement, and other contributors to 
scan quality.  

Although this technique is highly useful for brain imaging, 
it cannot currently be applied to spinal cord imaging data. 
Anatomical properties of the spinal cord cause imaging this 
region to be particularly difficult. Specifically, the cross-
sectional diameter of the spinal cord is approximately 8–12mm 
in the cervical cord, requiring high spatial resolution during 
scanning [8]. The small size leads to an increased likelihood 
of partial volume effects in voxels that cross boundaries of 
gray matter, white matter, or CSF. The tissues in and around 
the cord also differ in magnetic susceptibility, causing 
inhomogeneities in the static magnetic field and signal 
disruptions [8-9]. Furthermore, there are major noise 
contributions from physiological sources that are more severe 
than in brain imaging. Respiration leads to movement of the 
spinal cord throughout the breathing cycle; the cardiac cycle 
causes pulsatile movement of the CSF surrounding the cord, 
as well as in the nearby vasculature [8].  

These additional challenges in spinal cord fMRI increase 
the motivation to visualize these data on two-dimensional 
heatmaps similar to those regularly used in brain data. 
Unfortunately, due to the specificity of software to the 
anatomy being imaged, such as the use of Freesurfer to 
segment brain tissues [3], the current method cannot be 
directly applied to the spinal cord. Another difficulty is that the 
organizational priorities for sorting data along the vertical axis 
of the heatmap may differ in the spinal cord compared to the 
brain because of the differing functional anatomy. In this 
paper, we present a method for visualization of four-
dimensional spinal cord fMRI data that can be easily 
implemented into a preprocessing pipeline for data quality 
analysis. Additionally, we show examples of how the spinal 
cord plot can be reorganized and utilized to assess noise and 
artifacts.  
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II. METHODS 

This study was approved by the Northwestern University 
Institutional Review Board, and all participants gave written 
informed consent. The T2*-weighted fMRI data were 
acquired at the cervical spine with gradient-echo echo-planar 
imaging sequences and ZOOMit selective excitation 
(TE=30ms, TR=2s, 1x1x3mm3). Data were either resting-
state scans or breathing task scans, during which participants 
completed a sequence of regularly spaced breath-holds. The 
chosen example data specifically show some artifact or 
feature that explains the utility of this visualization technique. 
Prior to visualization all data were minimally preprocessed. 
Data were motion corrected with the Spinal Cord Toolbox 
function sct_fmri_moco [10], then registered to the PAM50 
template space [11]. 

A.  Organization of spinal cord data 
Template PAM50 masks of the spinal cord, vertebral 

levels, gray matter, white matter, and CSF transformed to the 
functional space are used to organize the heatmap data 
according to two separate schemes: tissue type and vertebral 
level. Tissue Type: The first organizational method attempts to 
differentiate deep gray matter to superficial white matter 
signals. Due to partial volume effects, the outermost voxels are 
expected to also contain signal from CSF around the cord. 
Binarized versions of the white and gray matter masks are 
iteratively eroded and subtracted to create concentric masks of 
the spinal cord (Fig. 1A). Optionally, CSF masks could also be 
created in this step, but are not shown here because those 
voxels would become the majority of the plot, and the gray and 
white matter signal are typically of greater interest in fMRI 
data analyses. Within each tissue mask, the data are also sorted 
by slice; superior to inferior data are plotted from top to 
bottom. Vertebral Level: The second method was generated to 
consider how artifacts may vary along the longitudinal axis of 
the cord and directly implements the transformed PAM50 
vertebral level mask to sort the data by vertebral level and slice 
(Fig. 1B). For both methods, the timeseries data for each voxel 
within these masks are exported and stored.  

These steps are compiled in a shell script which integrates 
functions from the Spinal Cord Toolbox [10], FSL [12], and 
AFNI [13], and can process spinal cord fMRI data that has 
been registered to the PAM50 template. 

B. The spinal cord plot visualization 
The fMRI timeseries from the masks are organized on the 

vertical axis according to the user’s input (Fig. 1). The most 
basic version of the plot includes just the functional data and a 
colorbar. Colorbars plotted to the left of each heatmap indicate 
which organizational method is being used and where in the 
cord those voxels are located. Additional output plots are 
dependent on the user’s input and choices.  

If physiological, motion, or other traces are provided, data 
are also co-visualized with those relevant traces. Physiological 
traces may include end-tidal CO2 (PETCO2), end-tidal O2, heart 
rate (HR), or respiratory belt data, and are visualized above the 
heatmap. Motion traces, such as the estimates output from an 
inter-volume registration algorithm, are also presented below 
the plot. A generalized linear model (GLM) is performed using 
a design matrix of the task, physiological noise, and/or motion 

traces, and voxelwise t-statistics are calculated for each model 
regressor. The heatmap, t-statistics, and regressors are all 
plotted to further visualize the contributions of relevant traces. 
The heatmap can also be reorganized according to the 
magnitude of specific t-statistics. Additionally, the frequency 
content of the fMRI data and all regressors can be visualized 
via plots of the relevant power spectra. In each of these figures, 
the heatmaps and traces are temporally lined up to enable 
visual discernment of the coincidence of data variation. A 
MATLAB (MathWorks, Natick, MA) function accepts the 
sorted timeseries as input data and performs these steps to 
create the desired heatmaps. The user can decide which data to 
input and which of the data visualizations they desire as output. 
Additional output from the function includes a directory of 
voxel coordinates (including the vertebral level if that 
organization was used) corresponding to the heatmap. 

III. RESULTS & DISCUSSION 

The heatmap organization – by tissue type or by vertebral 
level – can be switched to compare between the two methods, 
revealing interesting structured variance in spinal cord fMRI 
data. Examples of tissue type and vertebral level organizations 
are presented for a resting-state spinal cord fMRI dataset (Fig. 

 
Figure 1.  The two organizational methods for the heatmaps based 
on spinal cord anatomy shown on a 6.8-minute resting state 
functional scan. (A) The tissue type organization uses concentric 
masks of the spinal cord gray matter, indicated by the white mask, 
and of the white matter, indicated by the gray and green masks. 
Nested within each of those masks, the data are additionally sorted 
by slice. An example heatmap organized by tissue type is shown. (B) 
The vertebral level method is organized by level and slice. The 
shades of blue indicate the cervical vertebral levels included in this 
dataset. An example heatmap organized by vertebral level is shown.  
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1). In both versions of this heatmap, there is some visible 
structured signal variance. In the tissue type organization (Fig. 
1A), this variation appears to be spread throughout the gray 
matter and white matter tissue classes, although potentially 
most visible in the outermost white matter voxels (nearest to 
the CSF). In the vertebral level organization (Fig. 1B), the 
variation appears most prominently in the C2 and C4 vertebral 
levels. These multiple organizations are useful for determining 
the spatial distribution of signal variance, which may add 
insight into the source and impact of these effects.  

Fig. 2 uses an example spinal cord breath-hold task fMRI 
dataset to demonstrate how artifacts visualized with our 
approach can enable the user to identify signal variation that 
may be attributable to movement. Motion parameters from the 
Spinal Cord Toolbox algorithm that estimates and corrects for 
in-plane translations are shown below the heatmap. X and Y 
motion describe left-right and dorsal-ventral motion, 
respectively. In the fMRI data, there is a distinct signal artifact 
indicated by the boxed area. There is a concurrent spinal cord 
movement in both the X and Y motion traces, and most 
predominantly in the X Motion trace. In the tissue type 
organization of this plot, the signal artifact appears to be spread 
throughout tissue classes, without any regional specificity 
(Fig. 2A). However, the vertebral level organization of the 
same data shows that most of the signal artifact is located in 
the lower vertebral levels, suggesting that the artifact reflects 
participant movement of the more rostral portion of their 
cervical spinal cord (Fig. 2B).  

Fig. 3 shows spinal cord fMRI data from a scan intended 
to measure vascular reactivity via changes to arterial CO2 
induced with a repeated breath-hold task [1]. PETCO2 and HR 
are two of the physiological traces that were measured during 
this scan, and their demeaned traces convolved with the 
hemodynamic and cardiac response functions, respectively, 
are above the heatmap.  The traces from motion correction for 
this scan are visualized below the plot. Positioned to the right 

of the heatmap are the magnitude of the t-statistics derived 
from GLM fitting (with the color corresponding to the 
pertinent regressor plot), and can be used to visualize how the 
regressors account for variation in the functional data. The 
brightness of these t-statistics indicates the strength of the 
parameter estimate for that voxel. The structured variation in 

 

Figure 3.  A heatmap organized by tissue type, co-visualized with the 
physiological and motion regressors used in a generalized linear 
model. The timing of the repeated breath-hold task used during this 
functional scan is shown in each subplot. The slicewise X and Y 
motion traces are represented by light gray lines, and their average is 
represented by the orange and red lines, respectively. The voxelwise 
t-statistics of the model fits are presented to the right of the heatmap.  
 

 
Figure 2.  Heatmaps of a breath-hold scan presented with X and Y motion traces organized by both tissue type and by vertebral level. The slicewise X 
and Y motion traces are represented by light gray lines, and their average is represented by the orange and red lines, respectively. (A) The tissue type 
organization of the heatmap has a distinct signal artifact at approximately TR=50 seconds (yellow box), and the X and Y motion traces both have an 
abrupt movement at the same point in time. (B) The vertebral level organization of the same dataset shows the same abrupt motion artifact, but this 
heatmap organization rearranges the data so that the signal variation is more concentrated in the lower vertebral levels, indicating differential effects 
of the motion along the longitudinal axis of the body and spinal cord. 
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this heatmap appears as periodic, wide vertical bands that seem 
to coincide temporally with HR fluctuations, as well as with 
some of the fluctuation in PETCO2. The bright color across the 
HR t-statistics bar implies the strength of the model fit of this 
regressor, though this effect is difficult to interpret due to 
possible collinearity between the HR and PETCO2 regressors. 
The direct intention of the breath-holding task is the 
manipulation of PETCO2, but this plot highlights the challenge 
of covariance between that and other regressors in the GLM.   

In scans with periodic signals or task designs, like that 
represented in Fig. 3, the frequency content of the BOLD fMRI 
timeseries may also be of interest. Fig. 4 shows the power 
spectra of the physiological signals and fMRI timeseries of the 
same breath-hold scan. By visualizing the data this way, it is 
clear that both CO2 and HR have a dominant frequency peak 
at approximately 0.02 Hz, which corresponds to the brightest 
band in the frequency heatmap, as indicated by the arrows. 
There are additional bands at higher frequencies that 
correspond to the harmonics of the task paradigm.  

As shown, we can use this spinal cord plot to visualize a 
variety of fMRI scans, artifacts, and data features. Along with 
the tissue type organization, similar to what is used for the 
brain imaging plot [3], the addition of the vertebral level 
method is key because each uniquely considers ways in which 
noise and artifacts may impact spinal cord fMRI. We have 
seen how data structure and variation depend on these two 
methods. We have demonstrated motion coinciding with 
signal variance and how this holistic visualization of data can 
highlight covariance between GLM regressors. Our method 
provides a simplification of data quality inspection. 

IV. CONCLUSION 

 We have presented a non-exhaustive selection of the 
visualization options using our spinal cord fMRI heatmap 
technique. Each variation is a valuable approach to analyze 
imaging data and their correspondence to other signals prior to 
further processing and statistical analysis. This tool can be 
applied to quickly compare different datasets to each other or 
to compare one dataset at each step in a preprocessing pipeline. 

APPENDIX 
 Code, instructions, and example data that may be used to 

try out this visualization tool are available on GitHub: 
https://github.com/BrightLab-ANVIL/spinalcordplot. 

ACKNOWLEDGEMENTS 
We thank Dr. Mark Hoggarth, Dr. Rachael Stickland, and 

Apoorva Ayyagari for the collection of imaging data. Data 
were collected at the Center for Translational Imaging (CTI) 
in the Department of Radiology at the Northwestern 
University Feinberg School of Medicine, and we thank 
Rachael Young, Dr. Todd Parrish, and Dr. Yufen Chen at the 
CTI for their contributions to data collection.  

REFERENCES 
[1] J. Pinto, M. G. Bright, D. P. Bulte, and P. Figueiredo, 

“Cerebrovascular Reactivity Mapping Without Gas Challenges: A 
Methodological Guide,” Front. Physiol., vol. 11, pp. 1–19, Jan. 2021. 

[2] E. M. C. Hillman, “Coupling mechanism and significance of the 
BOLD signal: a status report,” Annu. Rev. Neurosci., vol. 37, pp. 161–
181, 2014. 

[3] J. D. Power, “A simple but useful way to assess fMRI scan qualities,” 
Neuroimage, vol. 154, pp. 150–158, Jul. 2017. 

[4] C. Gratton et al., “Removal of high frequency contamination from 
motion estimates in single-band fMRI saves data without biasing 
functional connectivity,” Neuroimage, vol. 217:116866, Aug. 2020. 

[5] D. A. Fair et al., “Correction of respiratory artifacts in MRI head 
motion estimates,” Neuroimage, vol. 208:116400, Mar. 2020. 

[6] J. Li et al., “Global signal regression strengthens association between 
resting-state functional connectivity and behavior,” Neuroimage, vol. 
196, pp. 126–141, Aug. 2019. 

[7] M. F. Glasser et al., “Using temporal ICA to selectively remove 
global noise while preserving global signal in functional MRI data,” 
Neuroimage, vol. 181, pp. 692–717, Nov. 2018. 

[8] F. Eippert, Y. Kong, M. Jenkinson, I. Tracey, and J. C. W. Brooks, 
“Denoising spinal cord fMRI data: Approaches to acquisition and 
analysis,” Neuroimage, vol. 154, pp. 255–266, Jul. 2017. 

[9] Y. Kong, M. Jenkinson, J. Andersson, I. Tracey, and J. C. W. Brooks, 
“Assessment of physiological noise modelling methods for functional 
imaging of the spinal cord,” Neuroimage, vol. 60, no. 2, pp. 1538–
1549, Apr. 2012. 

[10] B. De Leener et al., “SCT: Spinal Cord Toolbox, an open-source 
software for processing spinal cord MRI data,” Neuroimage, vol. 145, 
pp. 24–43, Jan. 2017. 

[11] B. De Leener, V. S. Fonov, D. L. Collins, V. Callot, N. Stikov, and J. 
Cohen-Adad, “PAM50: Unbiased multimodal template of the 
brainstem and spinal cord aligned with the ICBM152 space,” 
Neuroimage, vol. 165, pp. 170–179, Jan. 2018. 

[12] M. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, and 
S. M. Smith, “FSL.,” Neuroimage, vol. 62, no. 2, pp. 782–90, Aug. 
2012. 

[13] R. W. Cox and J. S. Hyde, “Software tools for analysis and 
visualization of fMRI data,” NMR Biomed., vol. 10, no. 4–5, pp. 171–
178, Jun. 1997. 

 

 

Figure 4. The power spectra of the same breath-hold task scan, end-
tidal CO2, and heart rate traces shown in Fig. 3. All are limited by the 
Nyquist frequency. Similar frequency peaks are seen in the 
physiological traces and the frequency heatmap, as indicated by the 
arrows. Additional frequency bands correspond to the harmonics of 
the breath-hold task stimulus timings.  
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