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Abstract— The purpose of the study described in this paper
is to shed more light on disease similarities by analyzing
the relationship between categorical proximity of diseases in
human-curated ontologies and structural proximity of the
related disease module (DM) in the interactome. We propose a
methodology (and related algorithms) to automatically induce a
hierarchical structure from proximity relations between DMs,
and to compare this structure with a human-curated disease
taxonomy.

Clinical relevance— Disease ontologies are extensively used
for diagnostic evaluation and clinical decision support but still
reflect the clinical reductionist perspective. We demonstrate
that the proposed network-based methodology allows us to
analyze commonalities and differences among structural and
categorical similarity of human diseases, help refine human
disease classification systems, and identify promising network
areas where new disease-gene interactions can be discovered.

I. INTRODUCTION

Disease taxonomies play a key role in defining the mecha-
nisms of human diseases, potentially impacting both diagno-
sis and treatment. However, as remarked in [1], contemporary
approaches to the classification of human diseases are mainly
based on anatomical and pathological data, and clinical
knowledge. Modern molecular diagnostic tools have shown
the shortcomings of this methodology, reflecting both a lack
of sensitivity in identifying pre-clinical diseases and a lack of
specificity in defining diseases unequivocally. As a response
to the limits of contemporary disease taxonomies, Zhou et
al. [2] proposed a New Classification of Diseases (NCD)
to capture the molecular diversity of diseases and define
clearer boundaries in terms of both phenotypical similarity
and molecular associations. Their study is based on the
so-called “disease module hypothesis”: proteins involved in
the same disease show a high propensity to interact with
each other [3]. Furthermore, if we identify a few disease
components, the other disease-related components are likely
to be located in their network-based “neighbourhood”.

On the other hand, inducing disease relationships solely
from DMs in the interactome is hindered by incomplete
knowledge of disease-related genes. In this study we propose
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a methodology to integrate categorical relationships automat-
ically induced from proximity of DMs in the human interac-
tome network, with manually crafted categories in human-
curated ontologies. Detected commonalities and differences
may suggest latent and unknown molecular properties of
diseases, help refine and extend disease classification sys-
tems, and facilitate precise clinical diagnosis consistent with
molecular network properties.

II. AIMS AND METHODS

DMs have been successfully used, for example, to priori-
tize diagnostic markers or therapeutic candidate genes, and in
drug repurposing [4], [5]. However, according to Barabási et
al. [5], these results have marginally influenced the disease
taxonomies and, conversely, to the best of our knowledge,
disease taxonomies have not been used to analyze DMs. In
this study we aim for the first time to integrate taxonomic
and network-based disease categorization principles, with the
following innovative contributions:

1) to automatically induce a full-fledged hierarchical
structure from proximity relations between DMs in the
human interactome;

2) to compare this structure with a human-defined disease
taxonomy (such as the Disease Ontology1));

3) to systematically identify categorical analogies and
discrepancies between molecular and human-defined
taxonomies.

Our research hypothesis is that a study of the relationships
between molecular-based and human-curated disease tax-
onomies could help refine our knowledge on human diseases
and identify limitations and perspectives of current module-
based computational approaches to the study of diseases.
The main phases of the proposed approach are the following:

A. Induction of a Taxonomy of Disease Modules:

First, we automatically induce a taxonomic structure of
diseases, hereafter referred to as the Interactome Taxonomy
(I-T). We induce the I-T by applying hierarchical agglomer-
ative clustering (with Average cluster-merge) to the human
interactome network, exploiting proximity relations of DMs,
as shown in Figure 1.

Given the interactome graph G, a set of diseases Dit and
their DMs DMit in G, hierarchical clustering is performed
using a distance matrix of DMs, based on the following
distance measure2:

dist(A,B) =

∑
a∈A minb∈BSP (a, b) +

∑
b∈B mina∈ASP (a, b)

|A| + |B|
(1)

1https://disease-ontology.org
2used, e.g., in [3]
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Fig. 1: A visual example of taxonomy induction.

where A, B are the set of nodes in modules DMA and
DMB associated to diseases dA, dB ∈ Dit and SP is the
shortest path length between two given nodes in G.

B. Taxonomy alignment

The I-T taxonomy is not immediately comparable with a
human-curated reference ontology (hereafter R-T). Whatever
the choice of the R-T, the R-T and the I-T are expected to be
defined on different sets of diseases nomenclatures, Drt and
Dit. Furthermore, they are also expected to be structurally
diverse. For example, R-T has usually a polyhierarchical
structure, while I-T is by construction a binary tree.

To compare I-T and R-T, we first need to create a mapping
M from Dit to Drt nomenclatures, and next, to prune the
hierarchies so that they include the same set of leaf disease
nodes, a process that we call taxonomy alignment. Let M be
an available mapping of disease nomenclatures (see Section
III for details). Our taxonomy alignment procedure consists
of three algorithms: merge, split, and prune.
Merge and Split: In the I-T disease nodes are by construc-
tion leaf nodes, while this is often not the case for the R-T
(see Figure 2 (left)). As visually shown in Figure 2 (right),
the purpose of the merge and split phases is to move all
disease nodes of the R-T on its leafs, without altering the
direction of hyperonymy relations.
Prune: Next, the prune algorithm prunes both the R-T and
the I-T, by recursively removing leaves not linked by any
mapping relation in M and chains of inner nodes. Examples
of removed nodes are highlighted with a double circle in
Figure 3.

As a final result, the R-T and the I-T have as leaf nodes
the same set of diseases, denoted as D∩.

I-T R-T
Split

Merge
+ I-T R-T

Fig. 2: A visual example of merge and split.

Pruning
I-T R-TI-T R-T

Fig. 3: A visual example of pruning.

C. Semantic Labeling of the Interactome Hierarchy (I-T)

After alignment, the two hierarchies are structurally com-
parable, however the inner nodes of the I-T do not have
category labels, by construction. To further facilitate a com-
parative analysis of I-T and R-T, we defined an algorithm
to label each inner node in the I-T with the most similar
category label in the R-T. In order to find the most similar

R-T category node, we exploit the notion of cluster Cc

associated with a category node c in a taxonomy, defined
as the set of all its descendant disease nodes that are also
in D∩. For example, the red circles in Figure 4 show the
clusters associated with the inner nodes A and A’ belonging
to the I-T and R-T respectively.

The labeling algorithm labels every I-T disease category c
with the name of the R-T category c′ with highest similarity
score sim(Cc, Cc′) between the clusters of c and c′. To
compute the similarity between two clusters, we use the
Jaccard coefficient, a popular measure of set similarity.
Always with reference to Figure 4, the label of node A’
of the R-T will be associated to node A of the I-T. Note
that only inner nodes with a similarity score higher than an
experimentally defined threshold receive a label.

I-T

A
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Fig. 4: A visual example of labeling.

III. EXPERIMENTAL SET UP

To conduct a DM analysis, we considered the most recent
release of the human protein-protein interaction network
published by Barabási et al. [4], which is an extension of
a highly cited and popular interactome used by Menche
et al. [3]. The network has |V | = 16 677 proteins and
|E| = 243 603 physical undirected protein interactions.

To construct DMs, we collected disease-gene associations
from DisGeNET [6] with a GDA3 score greater or equal of
0.3. Finally, we selected as DMs the 948 diseases with a set
of disease genes of size at least 104.

We selected the Disease Ontology (DO) as Reference
Taxonomy (R-T) [7], since it exploits the molecular in-
sights of disease phenotypes with the purpose of identifying
“commonalities of diseases located in a common molecular
location, originating from a particular cell type or resulting
from a common genetic mechanism”. For this reason, the
DO is a good categorical framework for integrating network
biology-based disease properties. By parsing the DO “obo”
file5, we generated a directed acyclic network hierarchy of
10012 diseases and disease categories, 10061 edges and 12
levels. To create a mapping M between the two different
nomenclatures, we used partial mappings directly provided
in DisGeNET and in the DO, that we further extended with
the support of clinicians to cover all the 948 DMs.

IV. RESULTS

In this Section, we summarize the major outcomes of a
clinical analysis supported by the methodology presented in

3GDA is a “reliability” score, for details see www.disgenet.org/
dbinfo#section43

4smaller modules imply a limited knowledge of the related disease-gene
associations to date, and may lead us to unreliable results.

5http://www.obofoundry.org/ontology/doid.html
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previous Sections. Our analysis is based both on the study of
matching and unmatching pairs of R-T and I-T categories.
Figure 5 is a visual representation of our findings6. The
red (i.e., disease of cellular proliferation), light purple (i.e.,
genetic disease), and orange (i.e., disease of anatomical
entity) network areas represent dense neighborhood identi-
fied as explained in Section IV-A. The three dashed circles
represent a zoom-in of the interactome. They show the three
“unexpected” disease category relationships, described in
Section IV-B.

Disease of cellular
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Genetic
disease

Ciliopathy-related
syndromes

Peroxisomal  
disease

2

Chronic obstructive
pulmonary disease

Cholestasis

3
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anatomical entity

Pulmonary Arterial
Hypertension

Glaucoma

1

Disease by
infectious agent

Fig. 5: A visual example of the labeled interactome.

A. Finding disease categories with a corresponding dense
neighbourhood in the interactome.

First, we conducted an analysis to reveal in the human
interactome large neighbourhoods of DMs associated with
disease categories in R-T. Dense neighborhoods of diseases
in the interactome network are useful to identify promis-
ing disease categories for disease gene prediction, drug
repurposing and detection of comorbidities. To find these
large neighbourhoods, we verified the existence of topmost
disease categories of the DO (our selected R-T) with a high
overlapping with some inner (categorical) nodes in the I-T. A
DO disease category c′ that is “well-represented” by an I-T
category c implies a strong molecular proximity relationship
among the diseases in cluster Cc. Symmetrically, this implies
that there exists a molecular mechanism that strengthens the
classification principle of the DO category.

We considered the 8 disease categories in the first level of
the DO as the most general disease categories (the categories
in Table I). To evaluate the degree of similarity between
these DO categories and their most similar correspondents
in the I-T, we used the Jaccard similarity, i.e. the “label
score” computed by the labeling algorithm of Section II-
C. We also calculated the statistical significance of our
results by computing the p-value over a random distribution.
Table I provides an overview of the topmost DO disease
categories and their similarity degree with correspondent I-T
categories induced from DM molecular network-proximity.
In particular, we found that the DO disease categories that

6Clearly, the Figure is only a simplified representation of the human in-
teractome, and furthermore, it does not preserve the dimensional differences
among highlighted areas

show a higher localization in a network neighborhood are
“disease of cellular proliferation” and “genetic disease”.
This means that tumors and genetic diseases are highly
localized in two neighbourhoods of the human interactome
(see upper-left clusters in Fig. 5). From a biological network
perspective, close DMs of “disease of cellular proliferation”
are motivated by the fact that cancer diseases have similar
genetic causes in differentiation and proliferation control
genes such as the well-known P53 [5]. The second best
matching category is “disease of anatomical entity”, i.e., dis-
ease grouped by human experts according to an anatomical
localization principle. However, as shown in the Table I,
the similarity value is high but not statistically significant.
This is motivated by the fact that diseases belonging to
this topmost category are grouped in diverse sub-categories
scattered over the network rather than in a large “anatomical”
neighbourhood (see orange clusters in Fig. 5). To confirm this
hypothesis, we performed a systematic automated pair-wise
comparison among sub-categories of “disease of anatomical
entity”. We found that very rarely category pairs belonging to
different anatomical sub-systems have overlapping clusters in
the I-T, with some obvious and well documented exception,
like nervous and respiratory systems, gastrointestinal and
integumentary systems, musculoskeletal and cardiovascular
systems [8]–[10]. In other terms, our experiments show that
the validity of the anatomical classification principle is not
disproved by the DM localization hypothesis, at least, given
our state-of-the-art knowledge of disease-gene associations.
This observation leads us to consider one limitation of the
study presented in this Section, which stems from the high
incompleteness of the human interactome [5]. It follows
that, while positive results (disease categories corresponding
to highly overlapping DMs) are useful pieces of evidence
to identify interesting areas of the interactome to discover
new disease-gene associations, the absence of such evidence
could be either motivated by the non existence of a similarity
relation, or by a lack of knowledge on gene interactions in
specific areas of the interactome.

TABLE I: Correspondence among topmost DO categories and the
induced taxonomy.

R-T (Disease Ontology) Induced I-T
Disease Category Name (size) Best Label Score (P-value)

disease of cellular proliferation (255) 54.77% (3.14 · 10�20)
disease of anatomical entity (434) 50.05% (0.08)

genetic disease (12) 41.66% (6.14 · 10�10)
disease by infectious agent (10) 30% (1.92 · 10�7)

physical disorder (21) 26.09% (1.51 · 10�9)
disease of mental health (76) 21.51% (1.06 · 10�13)

syndrome (42) 21.27 % (8.69 · 10�11)
disease of metabolism (55) 16.36% (4.66 · 10�11)

B. Finding unexplored structural relations between disease
categories.

A more interesting result would be to identify “unex-
pected” and unexplored neighborhoods in the I-T, e.g.,
disease categories that are not presently connected in human-
curated taxonomies but whose strong molecular similarities
suggest that one such connection should be exploited to en-
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rich the R-T ontology. To help finding these relations we de-
veloped a visual tool to explore the I-T in a more systematic
way. Supported by this tool, clinical experts have identified,
among the others, the following interesting results: there exist
strong unexpected molecular relationships between glaucoma
and pulmonary arterial hypertension, cholestasis and chronic
obstructive pulmonary diseases (COPD), peroxisomal dis-
eases and ciliopathy-related syndromes (see Fig. 5). We
remark that we detected these unexpected categorical disease
relationships thanks to the algorithm for labeling the I-
T. By delving into these relationships, we were able to
find confirmations in very recent clinical studies. For ex-
ample, Lewczuk et al. [11] shed light on common molecular
mechanisms and manifestations between pulmonary hyper-
tension and glaucoma through multiple case reports. Instead,
Tsechkovski et al. [12] observed that cholestasis and COPD
patho-mechanisms are mediated by common molecular com-
ponents like the Alpha 1-antitrypsin protein. However, the
relationship between Alpha 1-antitrypsin mutations and liver
disease is debated and yet to be elucidated [13]. Finally,
Zaki et al. [14] found biological mechanisms between per-
oxisomal diseases and ciliopathy related syndromes (e.g.
Joubert syndrome, Bardet-Biedl syndrome, Jeune syndrome).
In conclusion, recent clinical evidence confirms that these
detected relationships could be used to extend the DO. Other
unexplored strong relationships that we identified lack at the
moment support from published studies7, however the results
reported above demonstrate the relevance and potentials of
our proposed methodology.

V. DISCUSSION AND CONCLUDING REMARKS

We believe that the biomedical understanding of diseases
is on the edge of a radical change. The disease module
hypothesis, with its relevant applications to disease-gene
discovery and drug repurposing, is leading the revolution
of bio-medical research of the future. For these reasons,
we deem it fundamental to discover the degree of
correspondence between disease similarity relations induced
from the proximity of their related DMs, and categorical
similarity in human-curated disease taxonomies. We
developed a methodology to analyze relationships between
diseases by leveraging, in a novel way, both taxonomic and
molecular aspects. The proposed methodology supported
a systematic analysis of human-crafted disease categories
and their relationships with the DM molecular network-
proximity. In particular, we found that some disease in
“disease of cellular proliferation” and “genetic disease” form
promising large disease network-neighbourhoods that could
be exploited by network analysis methods for disease-gene
detection. Next, we evaluated the consistency of the “disease
anatomical entities” at the molecular level and found that
there is no strong evidence of a network-neighbourhood of
anatomical entities but, contrarily, disease neighbourhoods
related to anatomical systems are scattered. Finally, we

7A clinical confirmation of our findings is clearly outside the scope of
this research, although it represents a study hypothesis for further research
by clinicians in the field.

used our methodology to find unexplored strong molecular
relationships between “specific” disease categories, such as
glaucoma and pulmonary hypertension, diseases that are
distant in human-crafted taxonomies but appear to be related
by comorbidities and pathogenesis at the molecular level.

One limitation of our study arises from the highly incom-
plete state of the art knowledge on disease-related genes.
This resulted in a limited mapping between human-crafted
taxonomies and our induced hierarchy of DMs (about 12%
of DO diseases), and furthermore prevented the interpre-
tation of some evidence concerning unobserved molecular
relationships, which could be either motivated by the non
existence of such relations, or by the lack of knowledge on
gene interactions in specific areas of the interactome.

REFERENCES

[1] J. Loscalzo, I. Kohane, and A.-L. Barabasi, “Human disease classifi-
cation in the postgenomic era: a complex systems approach to human
pathobiology,” Molecular systems biology, vol. 3, no. 1, p. 124, 2007.

[2] X. Zhou, L. Lei, J. Liu, A. Halu, Y. Zhang, B. Li, Z. Guo, G. Liu,
C. Sun, J. Loscalzo, et al., “A systems approach to refine dis-
ease taxonomy by integrating phenotypic and molecular networks,”
EBioMedicine, vol. 31, pp. 79–91, 2018.

[3] J. Menche, A. Sharma, M. Kitsak, S. D. Ghiassian, M. Vidal,
J. Loscalzo, and A.-L. Barabási, “Uncovering disease-disease relation-
ships through the incomplete interactome,” Science, vol. 347, no. 6224,
p. 1257601, 2015.
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