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Abstract— Electroencephalogram (EEG) is a widely used
technique to diagnose psychological disorders. Until now, most
of the studies focused on the diagnosis of a particular psycho-
logical disorder using EEG. We propose a generic approach
to diagnose the different type of psychological disorders with
high accuracy. The proposed approach is tested on five different
datasets and three psychological disorders. Electrodes having
higher signal to noise ratio are selected from the raw EEG sig-
nals. Multiple linear and non-linear features are then extracted
from the selected electrodes. After feature selection, machine
learning is used to diagnose the psychological disorders. We
kept the same generic approach for all the datasets and diseases
and achieved 93%, 85% and 80% F1 score on Schizophrenia,
Epilepsy and Parkinson disease, respectively.

I. INTRODUCTION

One in five U.S. individual suffers from mental illness
each year. Epilepsy, Schizophrenia and Parkinson have the
highest prevalence among the psychological disorders. A
person suffering from one psychological disease is at a
higher risk of comorbidity. A recent study showed that
individuals with epilepsy are at eight times more risk to
suffer from schizophrenia as compared to an individual
with no epilepsy. Similarly, people with schizophrenia are
six times more likely to develop epilepsy. The same study
showed found that approximately 63.8 million, 19.8 million,
8.5 million individuals suffered from Epilepsy, Schizophrenia
and Parkinson, respectively [1]. Clinicians diagnose these
disorders by observing patient response to generic questions.
This manual way of diagnosis sometime leads to false
positives [2], [3].

Different researchers had tried to overcome this misdi-
agnosis by using electroencephalogram (EEG) technology
which captures the brain signals. Multiple statistical and
artificial intelligence base studies ranging from event related
potential (ERP), time frequency analysis to deep convolution
neural networks (CNN) have been carried out to study the
patterns in EEG signals for identifying the disease. V.T.
van Hees et al. acquired signal for 5 minutes to identify
epilepsy from two difficult-to-reach areas in rural Guinea-
Bissau and Nigeria. The diagnosis accuracy in Guinea-Bissau
and Nigeria area was 83% and 70% respectively [4]. Zhang
diagnosed schizophrenia by combining EEG and Non-EEG
features such as age, education etc and achieved an accuracy
of 81% [5]. Jahmunah et al. used 157 non-linears features
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and SVM classifier to classify schizophrenia. They obtained
an accuracy of 93% and their study is based on trial wise
classification [6]. Li OH et al. used the same dataset and
achieved an accuracy of 81% with subject wise classification
using CNN [7]. Cavanagh et al. obtained 82% accuracy by
carrying out ERP analysis to identify Parkinson disease from
EEG signals using SVM.

All these techniques work for a particular dataset and
disease and the methodology used for one data when im-
plemented on other data resulted in poor performance as
compared to the methodology made specifically for that data.

Some techniques are not applicable on other datasets such
as ERP technique cannot be used to study non ERP data. We
implemented these methodologies on different datasets. We
obtained the same performance as in the original study but
the results were poor when the technique is implemented on
another related dataset. In this study, we proposed a generic
technique that can work on multiple datasets and diseases.
Using this technique, we achieved an F1 score of 93%, 85%
and 80% on Schizophrenia, Epilepsy and Parkinson disease,
respectively.

II. METHODOLOGY

A. Dataset
There are five datasets used in this study to ensure

the validity of the proposed approach. Two of them are
schizophrenia datasets, two are epilepsy datasets, and one
is related to Parkinson disease. The proposed methodology
takes each dataset and classifies the control and patient
group of that dataset. The number of subjects (normal and
abnormal), number of electrodes and sampling frequency of
all five datasets are given in table I.

Schizophrenia dataset I (SzI) [8] was collected with three
different audio stimuli. In each stimulus, 100 trials each of
3 seconds were collected. The three stimuli were as follow.

• Stimulus I (SzI SI): Subject pressed the button to
generate an audio tone

• Stimulus II (SzI SII): Subject listened to previously
generated tone without pressing the button

• Stimulus III (SzI SIII): Subject pressed the button, but
no tone is generated.

Schizophrenia dataset II (SzII) [9] was comprised of 28
subjects. There is no stimulus involved in collecting data.

Epilepsy dataset 1 & 2 [4] datasets were collected using
EMOTIVE with the 128 Hz sampling frequency. Epilepsy I
(EpI) dataset was collected in GuineaBissau (97 subjects).
Epilepsy II (EpII) dataset was measured using the same
protocol in Nigeria (112 subjects).
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TABLE I: Dataset description

Datasets Subjects Age Elec Fs

SzI Normal 32
Patients 51

Normal:38.37 ±13.69,
Patient: 40.00 ±13.48 64 1024

SzII Normal 14,
Patients 14

Normal:27.75,
Patient: 28.10 19 256

EpI Normal 46,
Patients 51

Normal: 25±8,
Patient :25±13 14 128

EpII Normal 92,
Patients 112

Normal: 21±12,
Patient :20±8 14 128

PD Normal 25,
Patients 25

Normal:69.32±9.58,
Patient 69.68±8.73 60 500

SZ I and II: Schizophrenia dataset I and II, Ep I II: epilepsy dataset
I and II, PD: Parkinson dataset. Elec: Number of electrodes, Fs:
sampling frequency in Hz

Parkinson dataset (PD) [10] was comprised of 50 sub-
jects. Oddball paradigm approach was applied while collect-
ing this data.

B. Filtering

Each dataset is filtered using a band-pass filter. The low-
cut and high cut frequency is different for each dataset as
the amount of noise, and frequency range for the disease
varies in each dataset. For schizophrenia I dataset, low and
high frequency are set to 0.1 Hz and 60 Hz respectively. For
schizophrenia II dataset, filtering is performed within a range
of 0.1 to 45 Hz. Both epilepsy datasets are filtered within
a range of 0.3-30 Hz. Parkinson dataset is filtered with a
frequency range of 0.1-60 Hz.

C. Electrode selection

Most diseases only affect a specific part (location) of the
brain. Studies show that in case of schizophrenia prefrontal
and medial temporal lobes regions are most commonly
affected [11]. Changes in basal ganglia, cerebellum, thalamus
and hypothalamus are observed in Parkinson disease in
multiple studies [12]. Therefore, the selection of brain area
for signal acquisition is very important for each disease.
For this purpose, we proposed an approach for electrode
selection for the disease datasets. Instead of choosing the best
electrodes manually, electrodes are selected on the basis of
a variance threshold. Low variance electrodes are dropped,
and only high variance electrodes are kept. This method
increases the performance while simultaneously decreasing
the computation time.

First, principle component analysis is used to find the
number N of electrodes that contained 95% of the variance.
Once number N is obtained using PCA, the top N most
variate electrodes are selected across all subjects of data.
Resultantly, we retain original EEG data instead of principle
components, as top N variate electrodes are picked instead of
principle components. Retaining the original data is required
to extract suitable EEG features which might not be the case
when PCA components are used.

D. Feature extraction

Pre-processed data is segmented into epochs of 4 seconds
in case of non ERP data and original trial length is kept
in case of ERP data. Twenty-six linear and non linear

features including statistical features, time and frequency
domain features entropy features, Hjorth parameters etc are
calculated. Some of the important features are shown in table
IV.

E. Feature selection

Forward feature selection approach is used for feature
selection. First, the features are sorted based on accuracy
using linear SVM owing to its low time complexity. We start
adding features until adding a feature does not help in the
improvement of the performance.

F. Classification

Different machine learning classifiers are used for classi-
fication such as RBF kernel, support vector machine (SVM),
logistic regression (L.R.), K nearest neighbor (KNN) and
decision trees (DT). Grid search technique is used to tune
the hyper-parameters of these classifiers. Five fold cross
validation is applied to mitigate over-fitting issue. Four folds
are used for feature selection and model training and the
fifth fold is used for testing. This process is done five times
in such a way that there is no data leakage. Grid search
technique from python scikit-learn is used perform hyper-
parameter tuning in four folds and tuned model is used to
test the fifth fold of data.

G. Simulated noise

To check the robustness of our methodology, we added
noise to the dataset before filtering the data. We experimented
by adding 10% and 20% noise to the data. We assume that
the noise distribution is same as signal distribution, so we
take the mean and standard deviation of the data as the mean
and standard deviation of the noise [14].

III. RESULTS

First we implemented the papers discussed in introduction
section on different dataset. Table II shows the results
of replicated methodologies. Zhang [5] used demographic
features so methodology used to classify schizophrenia I
dataset cannot be used to classify disease when demographic
dataset is not available. Similarly Parkinson data is ERP
data and ERP technique cannot be implemented on non
ERP data. Slight modifications is made in methodology to
overcome the difference in number of channels. For example
in SZII dataset, there are 19 channels, but in epilepsy dataset
there are 14 channels, so number of channels in CNN is
reduced from 19 to 14. We observed that the performance of
technique used in epilepsy and schizophrenia II dataset de-
teriorate significantly on other datasets. To handle this issue,

TABLE II: Accuracy achieved in cross implementation

Data Base Our SZ I SZ II Epilepsy Parkinson
SZI 81.1% 81.5% No demographic data
SZII 81.6% 80 % 63% Base 67% 62%
Ep 70% 71% 60% 72% Base 70%
PD 82% 80% ERP Study

we proposed a simple generic approach to classify different
psychological disorders. After filtering, the first step is to
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TABLE III: Electrodes selected based on the magnitude of
variance

Data Slct/tot Electrodes

SzI SI 10/64 AF3, AF4, AF7, AF8, AFz,
Fp1, AFp2, Fpz, Fz, and Pz.

SzI SII 12/64 AF3, AF4, AF7, AF8, AFz, Fp1,
AFp2, Fpz, Fz, F3, F4, and F6.

SzI SIII 15/64 AF3, AF4, AF7, AF8, AFz,Fp2, Fpz
CP1, CP3, CPz, C1, C3,Cz, FC1, FCz.

SzII 9/19 F8, Fz, F7, P4, Pz, Fp1, O2, Fp2 and T5
EpI 8/14 AF3, O2, F4, FC6, T8, AF4, F8 and P8
EpII 10/14 AF3, O2, F4, FC6, T8, AF4, F8, P8, F7, FC5

PD 30/64
F4, TP8, POz, CP1, C3, FC5, FC3, T8, PO3,
CP5, PO7, T7 F3, F5, F8, FC1, C1, F2, P6, TP7,
C2, P1, F6, AF4, AF8, Fp2, AFz, AF7, Fp1, AF3

Slct/tot: Selected electrodes/total number of electrodes. Bold electrodes
shows that similar equipment and data collection procedure for a partic-
ular disease show similar position of important electrodes.

select the best electrodes from the data based upon variance
of the electrodes. Table III shows the selected electrodes
for each dataset. As there are different conditions/stimuli
in schizophrenia I dataset, so for each stimuli electrodes
are selected separately. The bold value in schizophrenia I
dataset shows that with same device under different stimuli,
most variant electrodes remain similar. Similarly in the
epilepsy datasets, electrodes are common even when data is
collected from two different countries. Therefore, using same
equipment having same frequency for a particular disease,
the best electrodes remain similar.

To check the importance of individual features we trained
a linear SVM classifier using each feature alone. Table IV
shows the accuracy of individual features for all datasets.
Hjorth complexity, Hjorth mobility, kurtosis, permutation
entropy, Katz and Petrosian fractal dimension, sample en-
tropy, root mean square, standard deviation, variance and
zero crossing are the features which show high accuracy
in at least 3 datasets. We found that features more related
to variance worked well such as standard deviation (root
of variance), Hjorth mobility which is the variance of first
derivative divided by the variance of signal. Similarly, Hjorth
complexity which reflect changes in frequency; is the ratio
of first derivative of mobility and mobility of signal also
worked well. Entropy based features were also selected as
final features for classification. Approximate entropy is the
measure of complexity of signal. It showed good result in
schizophrenia II and both epilepsy datasets. Sample entropy
is the improved version of approximate entropy and its result
resembled that of approximate entropy. The phase and fre-
quency information from the signal captured by approximate
and sample entropy is discarded in spectral entropy, this is
reflected in our analysis as spectral entropy did not capture
irregularity and complexity [13] and resulting in a lower
accuracy. Among the fractal features, Katz fractal showed the
best performance as it was selected in four datasets. Higuchi
showed worst performance as it is selected in two datasets
only. These results are also observed in other studies as Katz
is insensitive to noise and Higuchi is more sensitive to noise
[15], [16].

For the stimulus I of schizophrenia dataset, the highest

TABLE IV: Some of the individual feature’s accuracy.

Schizophrenia I SZII EpI EpII PD
Features SI SII SIII
Approximate
entropy 0.66 0.61 0.63 0.73 0.78 0.72 0.65

Hjorth
complexity 0.67 0.64 0.64 0.78 0.7 0.67 0.77

Hjorth
mobility 0.68 0.61 0.63 0.87 0.79 0.70 0.71

Katz fractal
dimension 0.63 0.66 0.67 0.87 0.78 0.69 0.70

Higuchi fractal
dimension 0.66 0.69 0.68 0.70 0.81 0.66 0.66

Kurtosis 0.69 0.65 0.7 0.77 0.61 0.60 0.73
Petrosian fractal
dimension 0.63 0.69 0.63 0.87 0.82 0.71 0.56

Root mean
square 0.65 0.70 0.61 0.78 0.67 0.64 0.82

Sample
entropy 0.62 0.61 0.63 0.77 0.78 0.72 0.72

Spectral
entropy 0.67 0.61 0.61 0.65 0.7 0.7 0.72

Standard
deviation 0.74 0.73 0.61 0.78 0.67 0.64 0.82

Variance 0.74 0.70 0.62 0.58 0.60 0.60 0.81
Zero crossing 0.68 0.61 0.67 0.77 0.65 0.68 0.76

Bold shows that these features are selected as final features for the dataset.

Fig. 1: Comparison of different classifiers for three different
stimuli of schizophrenia I dataset with selected electrodes
and features.

accuracy achieved without selecting the best features and
electrodes is 72% which increased by 10% when feature
selection technique is applied. The accuracy reaches up
to 86% by extracting features from the selected electrodes
according to proposed methodology as shown in fig 1. This
accuracy achieved is 5% better than previous best model
proposed by Zhang [5]. The accuracy, precision and recall
of other two stimuli are also shown in fig 1.

The same methodology is used for another schizophrenia
dataset to confirm the validity of model for diagnosis of
schizophrenia disease. Fig 2 shows the model performance
with the selected electrodes and features. 93% accuracy is
achieved with subject wise classification using decision tree
classifier which is 12% better than the results obtained by
S.L. Oh [7].

In order to figure out whether our approach can be used
for other disease datasets, two epilepsy datasets collected
from two different region of Africa were used. As compared
to previous best model [4], we got 2% and 12% increase
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Fig. 2: Machine learning classifiers comparison of
schizophrenia dataset II with selected electrodes and features.

Fig. 3: Classifier comparison for Epilepsy data with most
variate electrodes and selected features.

in accuracy in epilepsy I and II datasets, respectively. For
epilepsy dataset I and II, 78% and 79% accuracy is achieved
without selecting the best features, respectively. So, our
feature selection technique increased the accuracy by 6%
and 3% respectively for dataset I and II. The performance
of classifiers on both epilepsy datasets are shown in Fig 3.

Fig. 4: Machine learning classifiers performance for Parkin-
son disease

In order to further validate our proposed methodology,
the 5th dataset used is Parkinson disease dataset, where we
achieved equivalent result as compared to the previous state-
of-the-art technique [10]. However, the previous implemen-
tation is event related potential (ERP) specific and cannot be
implemented on non-ERP data. But our proposed approach
can be implemented on both ERP and non-ERP datasets. Fig
4 shows the performance of different classifiers.

A. Electrode Selection

In order to demonstrate the importance of electrode se-
lection, we compared the accuracy of the models developed
using most variate electrodes to the models developed using
all electrodes. Table V shows the accuracy and F1 score
when most variate electrodes and all electrodes are selected
separately. In schizophrenia I dataset with stimulus I, using
10 most important electrodes, the accuracy is 86% and F1-
score is 88%. Whereas using 64 electrodes, accuracy is 76%
and F1-score is 82%. Precision is reduced by 10% from
86% to 76%, whereas there is not much difference in recall.
Accuracy is decreased by 10% when number of electrodes
increased from 10 to 64 as using all the electrodes is not
an optimal solution. Using the nine top variate electrodes in
schizophrenia II dataset accuracy is 93%, which is reduced
to 90% when all electrodes are selected. The F1 score is
2% lower when using all electrodes as recall decreased
by 5%. The decrement of recall shows the importance of
electrode placement. In epilepsy dataset, total number of
electrodes are 14, and using 8 and 10 most variate electrodes
in dataset I and II resulted in F1-score of 85% and 84%
respectively. When all electrodes are used, F1-score reduced
by 1% and 4% in epilepsy I and II dataset, respectively.
In the epilepsy dataset, the total number of electrodes is
14, still our proposed methodology managed to choose the
optimal electrodes from a very few numbers of electrodes.
Parkinson dataset has 60 electrodes and using 30 most variate
electrodes accuracy and F1-score is 82% and 80%. There is
a slight improvement in accuracy when all electrodes are
selected as it increased by 2% but F1 score is decreased by
5%. The recall has also reduced significantly by 12% when
all electrodes are used. This analysis shows that electrode
selection minimizes the noise, reduces computation time and
improves the algorithm’s performance.
TABLE V: Performance comparison of all dataset with and
without electrode selection technique

Dataset Accuracy F1-score Precision Recall
All Most All Most All Most All Most

SzI SI 76% 86% 82% 88% 76% 86% 90% 91%
SzI SII 75% 81% 82% 86% 75% 80% 93% 94%
SzI SIII 69% 75% 74% 81% 67% 76% 87% 87%
SzII 90% 93% 92% 93% 95% 95% 90% 95%
EpI 83% 86% 84% 85% 85% 82% 84% 90%
EpII 78% 82% 80% 84% 84% 83% 88% 88%
PD 84% 82% 75% 80% 87% 85% 70% 82%

Most: Most variate electrodes selected. All: All electrodes are selected.
Bold indicate the best performance between all electrodes and most variate
electrodes used.

B. Noise Tolerance

In order to check the robustness of our methodology,
we added noise to the electrodes. Table VI shows the
result achieved when 10% and 20% noise is added to each
electrode. The noise is added before electrode selection,
but our proposed methodology automatically selected the
best electrodes from the noisy data. We found that our
algorithm selects slightly more electrodes with noisy data.
For schizophrenia I stimulus I, number of electrodes selected
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TABLE VI: Impact of adding 10% and 20% Gaussian noise.

Data Accuracy Precision Recall F1 Score
10% 20% 10% 20% 10% 20% 10% 20%

SzI SI 85% 72% 85% 75% 91% 84% 87% 78%
SzI SII 72% 75% 73% 80% 84% 82% 78% 79%
SzI SIII 72% 72% 76% 80% 81% 80% 77% 76%
SzII 87% 87% 87% 88% 95% 95% 88% 89%
EpI 82% 78% 79% 84% 90% 76% 84% 78%
EpII 80% 71% 81% 75% 86% 78% 83% 75%
PD 80% 80% 85% 83% 75% 80% 76% 78%

10% and 20% shows the percentage of added noise. Adding noise did not
reduce the performance of model significantly, proving the tolerability of
models.

is 10 without noise, 11 for 10% noise and 17 for 20% noise.
Similar trend is observed in epilepsy dataset I where without
noise 9 electrodes are selected as compared to 11 electrodes
with noise. For schizophrenia dataset I stimulus I, accuracy
decreased by 1% with 10% noise and 14% with 20% noise.
In case of schizophrenia II, accuracy decreased by 5% with
10% and 20% noise. Accuracy decreases by 2% in both
epilepsy datasets when 10% noise is added. There is not
much difference in performance when 20% noise is added to
the epilepsy dataset. Accuracy achieved in case of Parkinson
is reduced from 82% to 80% when 10% and 20% noise is
added. This analysis gave us the confidence that if data is
not filtered properly or if electrodes are not placed properly
and the resultant data is noisy, we can still achieve reliable
results. In case of schizophrenia I and both epilepsy datasets,
support vector machine outperformed the other classifiers,
but in case of schizophrenia II dataset and Parkinson dataset
decision tree work better than support vector machine. The
difference between performance of SVM and D.T. is 1%
only for schizophrenia II dataset, therefore we conclude that
kernel SVM works better than decision tree classifier in
our datasets. SVM often provides high accuracy with noisy
sensors data as hyperparameter selection of SVM chooses
optimal vectors to create hyperplane segregating each of
the category. This causes the removal of minor noise for
final model construction [17]. We also observed the same
behaviour as support vector machine works well even with
noisy data as compared to decision tree as shown in table
5 and 6, where we used all electrodes and noisy data,
respectively.

IV. CONCLUSION

Our proposed approach is generic and independent of
the dataset. We tested our methodology using five different
EEG datasets and achieved better or equal performance as
compared to the existing state of the art methods. The elec-
trode selection method is simple yet robust and our feature
selection method automatically chooses the best features,
by simply sorting the feature based on individual feature
accuracy. The advantage of generic model is that we do not
need to manually input the best features for each dataset.
It automatically selects the best features independent of the
dataset. We prefer machine learning over deep learning, as
deep learning is data hungry and requires a lot of data for
training. To check the robustness of the model, we added

10% and 20% noise to the data and our model remained sta-
ble in most cases. To check the effect of electrode selection,
we experimented with all electrodes and noticed significant
decrement in performance.
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