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Abstract— The electrooculography (EOG) signal baseline
is subject to drifting, and several different techniques to
mitigate this drift have been proposed in the literature.
Some of these techniques, however, disrupt the overall ocular
pose-induced DC characteristics of the EOG signal and may
also require the data to be zero-centred, which means that the
average point of gaze (POG) has to lie at the primary gaze
position. In this work, we propose an alternative baseline drift
mitigation technique which may be used to de-drift EOG data
collected through protocols where the subject gazes at known
targets. Specifically, it uses the target gaze angles (GAs) in a
battery model of the eye to estimate the ocular pose-induced
component, which is then used for baseline drift estimation.
This method retains the overall signal morphology and may
be applied to non-zero-centred data. The performance of
the proposed baseline drift mitigation technique is compared
to that of five other techniques which are commonly used
in the literature, with results showing the general superior
performance of the proposed technique.

I. INTRODUCTION

Electrooculography (EOG) is an eye movement recording
technique which records the electrical signal generated by the
human eyes. Specifically, there exists a potential difference
between the cornea and the retina, known as the corneo-
retinal potential, which allows the eye to be modelled by an
electrical dipole having its positive pole at the cornea and
its negative pole at the retina [1]. This creates an electrical
field and the electrical signal from this field is recorded using
electrodes which are attached to the face in close proximity
to the eyes. The typical electrode setup comprises a pair
of electrodes which is horizontally-aligned with the ocular
sockets and attached next to the outer canthi, and another
two electrodes which are aligned vertically with one eye and
attached above and below the eye [2].

The EOG signal baseline is subject to drifting and this
is due to background signal interference, electrode polari-
sation and variations in electrode contact pressure and skin
resistance [3]–[5]. This poses one of the main challenges to
EOG signal processing because, unless it is addressed, it may
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be misinterpreted as slow ocular rotation. In the literature,
the baseline drift has been addressed using several different
techniques. Specifically, the simplest technique involves no
specific pre-processing but rather requires the user to gaze
at a pre-determined location on the screen either deliberately
or periodically and the system is reset accordingly. Another
technique involves computing the derivative/difference of the
recorded EOG signals. This, however, distorts the overall
morphology of the EOG signals, losing their absolute ocular
pose-dependent DC characteristics. This signal distortion is
generally also the case when the baseline drift is mitigated by
high-pass filtering the data because, depending on the choice
of the cut-off frequency, the filtered EOG signals would be
characterised by a gradual decay towards zero. Conversely,
there are other techniques which estimate the baseline com-
ponent, either by fitting a polynomial function or through
multilevel 1D wavelet decomposition. This baseline estimate
is then subtracted from the recorded EOG data to yield the
baseline drift mitigated EOG signals. These two baseline
estimation-based techniques and high-pass filtering, however,
are only applicable to zero-centred data which implies that
the average point of gaze (POG) has to lie at the primary
gaze position. The reader is directed to the work of Barbara
et al. [5] for a comprehensive quantitative and qualitative
review of these different techniques.

In this work, we propose a novel EOG signal baseline
de-drifting technique which does not require the data to be
zero-centred nor disrupts the overall absolute ocular pose-
dependent DC characteristics. These characteristics may be
useful in applications such as for the automated evaluation
of the Arden Ratio [6] used for the diagnosis of ophthalmic
disorders, or for analysing the eye-head coordination during
gaze shifts such as in [7]. In the proposed technique, the
subject gazes at prescribed targets and these target gaze
angles (GAs) are used within a battery model of the eye to
estimate the ocular pose-induced component, which is then
used to estimate the baseline component. The battery model
used in the proposed target-enabled model-based de-drifting
(TEMoD) method relates the monopolar EOG potential to
the distances between the electrode and the cornea and retina
centre points of the two ocular globes [8], [9]. This work
also compares the de-drifting performance of the proposed
TEMoD method to the performance of the reviewed baseline
drift mitigation techniques commonly used in this domain.

Hence, the rest of the paper is divided as follows. Sec-
tion II discusses the nomenclature, the data acquisition
protocol and the proposed baseline drift mitigation method.
This is followed by Section III where the de-drifting perfor-
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mance results obtained using the proposed method and other
techniques used in the literature are presented and discussed.
Section IV concludes this paper.

II. METHOD

This section presents the nomenclature and the data acqui-
sition protocol followed in this work. The proposed TEMoD
method is also presented and discussed.

A. Nomenclature

In this work, the subject is assumed to be placed at a
distance D away from a screen having the midpoint between
the two ocular globes O aligned with the normal projected
from the centre of the screen Os, as shown in Fig. 1.
When the subject focuses their POG on a fixed target T
on the screen, the horizontal and vertical angles subtended
by the line OT and the normal OOs denote the horizontal
and vertical GAs, θh and θv , respectively, which may be
denoted collectively as θ = (θh, θv). The orientation of the
ocular globes may be expressed separately in terms of the
corresponding ocular angles (OAs), specifically in terms of
the azimuths φ(l)h and φ(r)h and elevations φ(l)v and φ(r)v of the
left and right eyes, respectively, which are defined as shown
in Fig. 1.

B. EOG Data Acquisition

The signal acquisition protocol used in this work was
approved by the University Research Ethics Committee
of the University of Malta and all participants provided
their informed prior consent. EOG data was recorded from
six subjects (2 males and 4 females, with mean age of
24.7±3.1 years), having normal or corrected-to-normal vi-
sion. Subjects were seated approximately 60 cm away from
a 24-inch monitor, with their heads rested on a chin-and-
forehead rest to avoid head movement during acquisition.

The subjects were asked to focus their POG on a target
cue which appeared at different locations on the monitor.
Specifically, a number of trials, each 4 s long, were recorded
consecutively for each subject. At the beginning of a given
trial j, the cue was initially displayed at position P1j and,

𝑶

𝑧

𝑦

𝑻

𝑑𝑃𝐷
2

𝑑𝑃𝐷
2

Not to

scale

𝐷

𝑶𝑠

𝑥

𝑶 𝑙 𝑦 𝑙

𝜙𝑣
𝑙

𝜙ℎ
𝑙

𝑧 𝑙

𝑥 𝑙

𝑶 𝑟
𝑦 𝑟

𝜙ℎ
𝑟

𝑧 𝑟
𝑥 𝑟

𝜙𝑣
𝑟

𝜃ℎ

𝜃𝑣

Fig. 1. Nomenclature used in this work, where dPD denotes the inter-
pupillary distance.

after 1 s the cue was moved to a different position P2j for
another 1 s. During the last 2 s of each trial, the cue changed
colour to instruct the subject to perform a blink. Therefore,
in a given trial j, the user is instructed to perform (i) a
saccade from P2j−1

to P1j during the first 1 s interval, (ii) a
saccade from P1j to P2j during the next 1 s interval, and
(iii) a blink in the last 2 s interval. The initial target position
P20 was set to the centre of the screen. In this work, zero-
centred and non-zero-centred EOG data were recorded in two
separate datasets, which are henceforth denoted as DZC and
DNZC , respectively. Specifically, DZC was comprised of
300 trials, wherein the position P1j in each trial was random
whereas P2j was always set to the centre of the screen, for
all j = 1, ..., 300. In contrast, DNZC was comprised of 200
trials, where the positions P1j and P2j for all j = 1, ..., 200
were random. Since two different gaze targets were shown
in each trial, DZC and DNZC contained NZC = 600 and
NNZC = 400 saccade windows, respectively.

The eye movements carried out were recorded using a
g.USBamp bio-signal amplifier (g.tec medical engineering
GmbH, Austria). A conventional electrode configuration was
used, where two electrodes were aligned horizontally with
the eyes and attached next to the outer canthi, whereas two
other electrodes were aligned vertically with the subject’s
right eye and mounted above and below the corresponding
ocular socket. A reference and a ground electrode were
attached on the subject’s left mastoid and forehead, respec-
tively. The EOG data was recorded at a 256 Hz sampling
frequency and was filtered using a 30 Hz low-pass filter. In
this work, the bipolar EOG signals computed from the two
horizontally-aligned and the two vertically-aligned electrodes
were used to yield what are commonly referred to as the
horizontal and vertical EOG channels, denoted by EOG1t

and EOG2t , respectively.

C. The Battery Model

The battery model used in this work was originally
proposed by Shinomiya et al. [8]. This only modelled the
monopolar EOG potential due to a single ocular globe, but
it has been recently augmented by Barbara et al. [9] to cater
for the influence of both ocular globes [8], [9]:
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where Vi is the monopolar EOG signal recorded by an
arbitrary electrode i, and d(y)xi denotes the distance between
the electrode and the left/right cornea/retina, where x ∈
{c, r} denoting the cornea or retina, respectively, and y ∈
{L,R} denoting the left or right ocular globe, respectively.
The distances d(y)xi are computed as in Barbara et al. [9].
Additionally, I is the current flowing within the ocular globe
from the retina to the cornea, and σ denotes the ocular globe
surface electrical conductivity [8], [9].

D. The Proposed TEMoD Method

An arbitrary EOG signal EOGit may be assumed to be
comprised of three components; namely (i) an ocular pose-
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induced component fi(θt), (ii) a baseline drift component bit
and (iii) noise wit . Hence, EOGit may be represented as:

EOGit = fi(θt) + bit + wit (2)

As discussed previously, the proposed method requires the
GAs {θs} corresponding to the target cues to which the
user was asked to attend to during EOG signal acquisition
for all s = 1, ..., Ns to be known, where Ns denotes the
total number of saccade windows, that is Ns = NZC or
Ns = NNZC , as appropriate. As shown in the method flow-
diagram in Fig. 2, these are used to estimate the ocular
pose-induced component f̂i(θt) for all channels i = 1, ..., N ,
where N denotes the total number of EOG channels to be
de-drifted. Specifically, considering channel i and saccade s,
f̂i(θs) is initially obtained by using the target GAs θs in
the battery model of (1). The instant at which the transition
from f̂i(θs−1) to f̂i(θs) occurs is aligned with the instant
at which the sth saccade occurs, thus compensating for the
human reaction time to attend to the target. Specifically, the
transition is set to occur at the mean t(s)i across all channels
i = 1, ..., N , where t(s)i denotes the instant in the sth saccade
window at which maximum velocity occurs.

After repeating this for all s = 1, ..., Ns, f̂i(θt) is then
subtracted from the corresponding recorded EOG signals
EOGit , to yield rit ≈ bit + wit , comprising the residual
noise and baseline components, as in (2). The low-frequency
baseline component b̂it may then be estimated from rit using
multilevel 1D wavelet decomposition using db6 wavelets,
specifically using a reconstruction level of 11, which lies
in the optimal range determined in the review of Barbara
et al. [5]. Note that, in order not to allow the blink-
induced EOG displacements distort the estimated baseline
component, blinks are initially detected and removed using
a standard template matching-based technique as in Bulling
et al. [10] on the differenced vertical EOG channel. The
baseline drift-mitigated EOG signals, denoted by EOG′it ,
are then obtained by subtracting b̂it from the corresponding
monopolar EOG channel EOGit . Note that the battery model
and the multilevel wavelet decomposition method used for
the estimation of the ocular pose-induced and baseline com-
ponents of the EOG signal, respectively, may be replaced by
suitable alternatives. Fig. 3 shows the EOG signals obtained
after they are de-drifted using the proposed technique.

E. De-Drifting Performance Evaluation

This work compares the de-drifting performance of the
proposed technique to the baseline drift mitigation techniques
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Fig. 2. EOG signal baseline de-drifting flow diagram.

Fig. 3. Baseline drift mitigation using the proposed method.

reviewed in Section I which are commonly used in the
literature. Therefore, the techniques implemented in this
work include: (i) frequent resetting, (ii) signal differencing,
(iii) high-pass filtering, (iv) polynomial fitting, (v) multilevel
1D wavelet decomposition, and (vi) the proposed TEMoD
method. The parameters used in techniques (i)-(v) were set
to the optimal values as determined in the review of Barbara
et al. [5]. The baseline de-drifting performance was also
assessed in a similar way to Barbara et al. [5], specifically
by calculating the GA estimation error obtained using the
de-drifted EOG signals for each of these six techniques.
To this end, a two-channel input linear regression model,
using features extracted from the horizontal and vertical EOG
channels simultaneously, was used to estimate the GAs. Such
a modelling technique was found to yield a generally superior
estimation performance when compared to using a pair of
linear regression models, one for each EOG channel [11].

A cross-validation procedure was used where specifically,
the EOG signals recorded for each subject in datasets DZC

and DNZC , as appropriate, were divided into three equally-
sized subsets, denoted as SA, SB and SC , respectively. SA

was used to determine the electrode positions required for the
battery model in the proposed method, which were estimated
as in Barbara et al. [9]. SB was used to determine the
EOG-to-GA regression model weights, whereas SC was used
to quantify the GA estimation performance. This procedure
was repeated for all six combinations of the three subsets.
In order not to bias the results, those windows in which
the subject was not compliant with the instructions, such as
blinking while the subject was expected to perform a saccade
or performing return saccades prematurely, were excluded
resulting in 100 and 66 saccade windows in each subset using
DZC and DNZC , respectively.

In order to quantify the GA estimation performance, the
horizontal and vertical GA estimates θ̂ht

and θ̂vt were
initially obtained from the de-drifted horizontal and vertical
EOG channels, EOG′1t and EOG′2t , respectively. The mean
GA estimates ¯̂

θhs
and ¯̂

θvs obtained in the interval between
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TABLE I
DE-DRIFTING PERFORMANCE RESULTS OF THE PROPOSED TECHNIQUE AND OTHER TECHNIQUES COMMONLY USED IN THE LITERATURE.

Zero-Centred Data Non-Zero-Centred
Data

Proposed TEMoD
Method

Frequent
Resetting

Signal
Differencing

High-pass
Filtering

Polynomial
Fitting

Multilevel
1D Wavelet

Decomposition

Proposed TEMoD
Method

Subject Eh(°) Ev(°) Eh(°) Ev(°) Eh(°) Ev(°) Eh(°) Ev(°) Eh(°) Ev(°) Eh(°) Ev(°) Eh(°) Ev(°)
S1 0.66 0.95 0.85 1.26 0.74 1.00 1.74 1.50 1.73 1.61 2.30 1.60 0.80 0.99
S2 0.81 1.81 0.86 1.84 0.87 1.46 1.78 2.67 1.87 3.12 1.96 2.19 0.90 1.60
S3 1.13 1.55 1.18 1.59 0.87 1.31 2.14 1.86 2.46 2.27 2.29 1.98 0.80 1.76
S4 1.67 2.15 1.83 2.20 1.18 1.45 2.68 2.77 2.83 3.02 2.99 2.70 1.70 1.86
S5 1.40 1.87 1.95 2.45 1.05 1.30 2.50 2.68 2.96 3.12 2.46 2.12 1.35 1.45
S6 0.94 1.62 0.98 1.61 1.04 1.88 1.73 1.87 1.84 1.91 2.12 2.04 1.11 1.51

Average 1.10±
0.38

1.66±
0.40

1.27±
0.49

1.82±
0.44

0.96±
0.16

1.40±
0.29

2.10±
0.41

2.23±
0.55

2.28±
0.54

2.51±
0.67

2.35±
0.36

2.11±
0.36

1.11±
0.36

1.53±
0.30

the occurrence of the sth saccade and the end of the corre-
sponding 1 s time window in which it was performed were
then evaluated. The error (ehs , evs) =

(
θ∗hs

, θ∗vs
)
−
(

¯̂
θhs ,

¯̂
θvs

)
was evaluated, where θ∗hs

and θ∗vs denote the target horizontal
and vertical GAs for the sth saccade, respectively, and used
to work out the mean horizontal and vertical GA estimation
errors, Eh and Ev , respectively. It is noteworthy that since
for the signal differencing method the EOG potential dis-
placements are used to estimate the gaze displacements, the
errors presented in this case are gaze displacement estimation
errors.

III. RESULTS AND DISCUSSION

The cross-validated performance results obtained when
the six baseline drift mitigation techniques were applied
to zero-centred data DZC are tabulated in Table I. These
results show that the proposed TEMoD method is superior
when compared to the rest of the techniques, except for
the signal differencing method. It is however noteworthy
that, although both the signal differencing and the proposed
methods may be applied to non-zero-centred data, the better
performance obtained using signal differencing comes at the
cost of disrupting the overall morphology of the EOG signals,
as gaze movement-induced displacements are transformed
into spikes. This may be undesirable, for example when
analysing slow eye movements, such as smooth pursuits and
vestibulo-ocular reflexes (VORs). Furthermore, for absolute
POG estimation, valid saccade spikes would need to be
detected, transformed into equivalent gaze displacements and
accumulated. This whole process may result in missed small
gaze-movements as well as accumulation of error [5].

Since the proposed method is generally applicable to non-
zero-centred data, this technique was also applied to DNZC .
The results obtained are shown in Table I, showing compa-
rable error as for the zero-centred data, demonstrating that
the proposed technique may be applied to EOG data which
does not necessarily possess zero-centred characteristics.

IV. CONCLUSION

This work has proposed a novel EOG signal baseline drift
mitigation technique which uses the target GAs, which the
user attended to during EOG signal acquisition, within a
battery model of the eye to obtain an estimate of the ocular
pose-induced component. The proposed TEMoD technique

was shown to compare well with other baseline drift miti-
gation techniques used in the literature, but comes with the
added advantages of retaining the overall morphology and
DC characteristics of the EOG signal and being applicable
to EOG data which may not necessarily be zero-centred.
This makes the method suitable for applications requiring a
controlled test during which the subject is requested to gaze
at specific points of regard, for example for the evaluation
of the Arden Ratio [6] used for the diagnosis of ophthalmic
disorders, or for analysing the eye-head coordination during
gaze shifts such as in [7]. Future work will also consider
algorithmic mechanisms to mitigate subject compliance in
attending to the targets.
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