
  

  

Abstract— Magnetic resonance imaging has been widely 
adopted in clinical diagnose, however, it suffers from relatively 
long data acquisition time. Sparse sampling with reconstruction 
can speed up the data acquisition duration. As the state-of-the-
art magnetic resonance imaging methods, the structured low 
rank reconstruction approaches embrace the advantage of 
holding low reconstruction errors and permit flexible 
undersampling patterns. However, this type of method demands 
intensive computations and high memory consumptions, thereby 
resulting in a lengthy reconstruction time. In this work, we 
proposed a separable Hankel low rank reconstruction method to 
explore the low rankness of each row and each column. 
Furthermore, we utilized the self-consistence and conjugate 
symmetry property of k-space data. The experimental results 
demonstrated that the proposed method outperforms the state-
of-the-art approaches in terms of lower reconstruction errors 
and better detail preservation. Besides, the proposed method 
requires much less computation and memory consumption. 

Clinical Relevance— Parallel imaging, image reconstruction, 
Hankel low-rank 

I. INTRODUCTION 

As a non-invasive and non-radioactive imaging technique, 
magnetic resonance imaging (MRI) has served as an 
indispensable and widely used tool in the clinic [1]. However, 
the relatively slow acquisition speed limits its application. One 
of the effective ways to alleviate the prolonged data acquisition 
time is sparse sampling which acquires only a small subset of 
the k-space data. 

Sparse sampling has emerged as an intensive research field 
in the past decade, thanks to its effectiveness in shortening the 
acquisition time and the solid theoretical foundation of the 
compressed sensing technique. In sparse sampling, the 
undersampled data is reconstructed using proper priors. Two 
common priors are sparsity and low-rankness. Sparsity 
methods assume the image to be sparse in transform domains, 
such as total variations [2], wavelets [3-7], and adaptive sparse 
transforms [8-12]. Low-rankness methods utilize the linear 
correlations among dynamic or high-dimensional MRI images 
[13-16]. 

Recently, approaches taking advantage of the structured 
low rankness of MRI data have been shown to provide 
promising reconstructions with low reconstruction errors. The 
structured low-rankness was derived from compact k-space 
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support of coil sensitivities [17], the sparsity of the image in 
transform domain [18-20], or from finite support of the 
image/smoothness of image phase [21, 22]. Better 
reconstructions with the lower error were obtained using those 
methods than the traditional compressed sensing approaches. 
However, these approaches need to arrange the MRI data into 
a high-dimensional structured low-rank matrix. This results in 
high computation demands and large memory consumption, 
leading to slow reconstruction time.  

In this work, we proposed a new strategy aiming to 
alleviate this problem and meanwhile to provide better 
reconstructions. A separable low rank (SHLR) reconstruction 
method was proposed by enforcing the low rankness of each 
row and each column of MRI data, avoiding constructing the 
high-dimensional low-rank matrix thereby enables much less 
memory cost and allows faster computation. In addition, the 
self-consistence and conjugate symmetric of k-space data are 
considered in the proposed formulation. The proposed 
method permits effective utilization of the low-rank property 
as the structured low rank does. The experimental results 
show that the proposed method yield reconstruction with low 
error and fast speed. 

The rest of this paper is organized as follows. Section II 
presents the proposed model and numerical algorithm, and 
Section III demonstrates the reconstruction performance. The 
conclusions are finally drawn in Section IV. 

II. PROPOSED METHOD 

The STDLR-SPIRiT [20] explored the simultaneous 
horizontal and vertical directional low-rankness in the k-space 
data, therefore, reduce the image reconstruction errors and 
outperforms the other state-of-the-art structured low-rank 
methods. However, the size of the block Hankel matrix 
appears dramatically huge, leading to a long computational 
time and large memory requirements. 

In this work, instead of constructing a huge size block 
Hankel matrix, we proposed a separable Hankel low rank 
reconstruction method to enforce the low-rankness of each row 
and each column of image as follows: 

Institute for Data Science in Health and Medicine, Xiamen University, 
Xiamen 361105, China. 

Xi Peng is with Department of Radiology, Mayo Clinic, Rochester, MN 
55902, United States. 

Qin Xu are with Neusoft Medical System, Shanghai 200241, China. 
Di Guo is with School of Computer and Information Engineering, Xiamen 

University of Technology, Xiamen 361024, China. 

Accelerated image reconstruction with separable Hankel 
regularization in parallel MRI 

Xinlin Zhang, Zi Wang, Xi Peng, Qin Xu, Di Guo, Xiaobo Qu* 

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 3403



  

 
1D 1D

vc vc* *
1 1

2 22D 1

min

,
2 2

M N

m n
m n

FF

λ λ
= =

+

+ − + −

∑ ∑X
H WF P X H WF Q X

Y UF X X GX

     

   (1) 

where [ ]1 2, , , J=X X X X  denotes the desired multi-coil image, 
M N

j
×∈X   is the image of the j-th coil, M , N , and J  are the 

number of the row, column, and coil of the data. 2DF  is the 2D 
Fourier transform for each coil data. The mP  and nQ  denote 
the operators that extract m-th row and n-th column from each 
coil data for 1, ,m M=   and 1, ,n N=  . Here, we define 

row
,m jx  as the m-th row of jX , and col

,n jx  as the n-th column of

jX . With these notations, we have 
row row row

,1 , ,, , , , N J
m m m j m J

× = ∈ P X x x x    and 
col col col

,1 , ,, , , , M J
n n n j n J

× = ∈ Q X x x x   . The operator vcH  is defined as: 

( ) ( )

( ) ( )

† †1D 1D row 1D row 1D row 1D row
vc ,1 , ,1 ,

† †1D 1D col 1D col 1D col 1D col
vc ,1 , ,1 ,

, , , , , ,

, , , , , .

m m m J m m J

n n n J n n J

 =   
 =   

H WF P X HWF x HWF x HW F x HW F x

H WF Q X HWF x HWF x HW F x HW F x

  

 

  

 

 

where the operator 1DF  denotes the 1D Fourier transform on 
a vector, W  performs weighting on a vector with the weights 
obtained from applying Fourier transform to 1D sparse 
transform filter, and H  converts a vector into a Hankel matrix. 
The tilde above the operator means that the corresponding 
operation is performed on each column vector of the matrix. 
The superscript †  represents the operation of taking the 
conjugate and flipping the vector along the center. 

The numerical algorithm will be derived to solve the 
proposed model in Eq. (1) as below. The whole algorithm is 
summarized in Pseudo Code. 

Introducing row 1D
vcm m=Z H WF P X   , col 1D

vcn n=Z H WF Q X   , and 
Lagrange multiplier row

mD  and col
nD , the augmented Lagrangian 

form of Eq. (1) is  

row colrow col

2row row 1D 1D row
vc vc*, ,, 1

2col col 1D 1D col
vc vc*

1

2 22D 1

max min ,
2

,
2

,
2 2

m nm n

M

m m m m m F
m

N

n n n n n F
n

FF

β

β

λλ

=

=

 + + − 
 
 + + + − 
 

+ − + −

∑

∑

X Z ZD D
Z D H WF P X H WF P X Z

Z D H WF Q X H WF Q X Z

Y UF X X GX

     

        (2) 

where ,⋅ ⋅  represents the inner product of the matrix, and β  
the penalty parameter. 

The solution of (2) can be obtained by alternatively solving 
the following three sub-problems: 

The first sub-problem is 
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TABLE I. THE PSEUDO CODE OF THE ALGORITHM FOR THE PROPOSED 
SHLR. 

Pseudo Code MRI image reconstruction with SHLR. 

Input: Y, U, G, λ , 1λ , β , τ . 

Initialization: row col
m n= =Z Z 0 , row col

m n= =D D 1 , and 1k = . 
Output: X. 

1: while 50k <  and ( ) ( ) ( )2 21 6/ 10k k k

F F

+ −− ≥X X X  do 

2:     Update ( )1k+X  by solving equation (4); 
3:     Update ( )1row k

m
+Z  and ( )1col k

n
+Z  by using (6); 

4:     Update multiplier ( )1row k
m

+D  and ( )1col k
n

+D  by using (7); 

5:     1k k= + ; 
6: end while 

 

(c) (d) (e)(b)(a)

(g) (j)(i)(h)(f)  
Fig. 1. Reconstruction results and errors under uniform pattern. (a) An SSOS image of fully sampled data; (b-e) SSOS images of reconstructed results by L1 
-SPIRiT, AC-LORAKS, STDLR-SPIRiT and SHLR-SV, respectively; (f) the uniform undersampling pattern with a sampling rate of 0.23; (g-j) the 
reconstruction error distribution (10×) corresponding to reconstructed image above them. Note: the RLNE of L1-SPIRiT, AC-LORAKS, STDLR-SPIRiT 
and SHLR are 0.0935, 0.0936, 0.0714, and 0.0696, respectively. 
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The second sub-problem is  
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The solution of Eq. (5) lies as 
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where ( )1/S β ⋅  denotes the soft singular value thresholding 
operator with the threshold of 1/ β  on a matrix. 

The third subproblem can be updated by 
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III. RESULTS 

In this section, we evaluated the performance of the 
proposed parallel imaging reconstruction method, SHLR, 
using in vivo brain MRI data. The proposed method was 
compared with three other state-of-the-art reconstruction 
approaches including L1-SPIRiT [23], AC-LORAKS [22], 
and STDLR-SPIRiT [20]. The codes of L1-SPIRiT are shared 

online by Dr. Michael Lustig and codes of AC-LORAKS are 
shared on Dr. Justin P. Hadard’s website. Here, we adopted S-
based AC-LORAKS whose formulation make use of phase 
constraints, since LORAKS with phase constraint provides the 
best result compared to other constraints [21]. Parameters of 
all the comparison methods are optimized to obtain the lowest 
relative L2 norm error (RLNE). Here, the RLNE is defined as 

2

2

ˆ
RLNE=

−x x
x

,        (8) 

where x  and x̂  denotes the column stacked fully sampled k-
space data and reconstructed k-space data, respectively. In all 
experiments, the reconstructed multi-coil images are 
combined by a square root of the sum of squares (SSOS), and 
the error distributions of multi coils were combined into a 
single-coil difference image with SSOS. 

Two brain datasets acquired from healthy volunteers are 
adopted in experiments. The dataset depicted in Fig. 1 (a) is 
obtained from a 3T SIEMENS Trio MRI scanner (Siemens 
Healthcare, Erlangen, Germany) equipped with a 32-coil using 
T2-weighted FLAIR sequence (matrix size = 256 ×256, 
TR/TE = 3900/9.3 ms, FOV = 200 mm ×200 mm, slice 
thickness = 5 mm). Eight virtual coils are compressed from the 
acquired data of 32 coils [24] to reduce the computational 
complexity. The other dataset shown in Fig. 2 (a) is acquired 
from a 3T SIEMENS Trio whole-body scanner (Siemens 
Healthcare, Erlangen, Germany) equipped with a 32-coil using 
the 2D T2-weighted turbo spin echo sequence (matrix size = 
256 ×256, TR/TE = 6100/99 ms, FOV = 220 mm ×220 mm, 
slice thickness = 3 mm). Four virtual coils are compressed 
from the acquired data of 32 coils [24]. All computation 
procedures ran on a CentOS 7 computation server with two 
Intel Xeon CPUs of 3.5 GHz and 112 GB RAM.  

We first validated the proposed method with the 1D 
uniform undersampling pattern, which is widely adopted in 
commercial scanners. Both L1-SPIRiT (Fig. 1 (b)) and AC-
LORAKS (Fig. 1 (c)) have strong undersampling artifacts. 

(a)

(f)

(b) (c) (e)

(g) (h) (j)

(d)

(i)  
Fig. 2. Reconstruction results and errors under Cartesian pattern. (a) An SSOS image of fully sampled data; (b-e) SSOS images of reconstructed results by 
L1 -SPIRiT, AC-LORAKS, STDLR-SPIRiT and SHLR, respectively; (f) the Cartesian undersampling pattern with a sampling rate of 0.34; (g-j) the 
reconstruction error distribution (12.5×) corresponding to reconstructed image above them. Note: the RLNE of L1-SPIRiT, AC-LORAKS, STDLR-SPIRiT 
and SHLR are 0.0900, 0.0761, 0.0746, and 0.0616, respectively. 
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STDLR-SPIRiT (Fig. 1 (d)) and SHLR (Fig. 1 (e)) show the 
good ability of artifacts removing. But it is worthy to note that 
SHLR provides the image with lower error than STDLR-
SPIRiT, indicating the excellent ability of the proposed 
method in terms of artifacts removal and detail preservation. 

As shown in Fig. 2, AC-LORAKS (Fig. 2 (c)) yields results 
exhibiting obvious artifacts inside the internal brain area, 
whereas the ringing artifacts also remain in the reconstructed 
image of L1-SPIRiT (Fig. 2 (b)). Both STDLR-SPIRiT (Fig. 2 
(d)) and SHLR (Fig. 2 (e)) provide the image with nice artifact 
suppression. The reconstruction error of STDLR-SPIRiT 
appears slightly larger than that of SHLR, especially near the 
skull. The proposed SHLR method permits the relatively lower 
reconstruction error and edge preservation, appearing robust to 
the sampling patterns. 

The proposed SHLR approach gain a significant reduction 
in the reconstruction time than STDLR-SPIRiT. The 
computational time of L1-SPIRiT, AC-LORAKS, STDLR-
SPIRiT and the proposed method SHLR are 16.8 seconds, 7.7 
seconds, 758.1 seconds, 95.8 seconds, respectively. The 
running time of SHLR is reduced to 1/8 of that of STDLR-
SPIRiT, which dramatically alleviates the burden of lengthy 
reconstruction time of STDLR-SPIRiT Though the proposed 
method still runs relatively slower than L1-SPIRiT and AC-
LORAKS time runtime of SHLR has been acceptable 
considering its improvements in the image. 

IV. CONCLUSION 

In this paper, we attempted to alleviate huge computational 
memory consumption of the popular structured low-rank 
Hankel methods and to improve the reconstructions. Different 
from the existing structured low-rank Hankel approaches, we 
did not lift the signal to a very high dimensional Hankel matrix. 
Instead, we proposed a separable Hankel low rank 
reconstruction (SHLR) to enforce the low-rankness of each 
row and each column of the signal of interest. Besides, we 
imposed the SPIRiT constraint to utilizing the correlation 
between rows and columns and introduced the conjugate 
symmetry property into formulation by constructing the 
Hankel matrix containing the conjugate symmetric. The 
proposed approach can provide slightly better results with 
faster reconstruction speed compared to the state-of-the-art 
methods. 

 

REFERENCES 
[1] J. Hamilton, D. Franson, and N. Seiberlich, "Recent advances in 

parallel imaging for MRI," Progress in Nuclear Magnetic 
Resonance Spectroscopy, vol. 101, pp. 71-95, 2017. 

[2] K. T. Block, M. Uecker, and J. Frahm, "Undersampled radial MRI 
with multiple coils. Iterative image reconstruction using a total 
variation constraint," Magnetic Resonance in Medicine, vol. 57, 
no. 6, pp. 1086-1098, 2007. 

[3] M. Lustig, D. Donoho, and J. M. Pauly, "Sparse MRI: The 
application of compressed sensing for rapid MR imaging," 
Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182-1195, 
2007. 

[4] X. Qu, W. Zhang, D. Guo, C. Cai, S. Cai, and Z. Chen, "Iterative 
thresholding compressed sensing MRI based on contourlet 
transform," Inverse Problems in Science and Engineering, vol. 18, 
no. 6, pp. 737-758, 2010. 

[5] Y. Liu, Z. Zhan, J. Cai, D. Guo, Z. Chen, and X. Qu, "Projected 
iterative soft-thresholding algorithm for tight frames in 
compressed sensing magnetic resonance imaging," IEEE 
Transactions on Medical Imaging, vol. 35, no. 9, pp. 2130-2140, 
2016. 

[6] X. Zhang et al., "A guaranteed convergence analysis for the 
projected fast iterative soft-thresholding algorithm in parallel 
MRI," Medical Image Analysis, vol. 69, p. 101987, 2021. 

[7] Y. Hu et al., "Spatiotemporal flexible sparse reconstruction for 
rapid dynamic contrast-enhanced MRI," IEEE Transactions on 
Biomedical Engineering, doi: 10.1109/TBME.2021.3091881, 
2021. 

[8] S. Ravishankar and Y. Bresler, "MR image reconstruction from 
highly undersampled k-space data by dictionary learning," IEEE 
Transactions on Medical Imaging, vol. 30, no. 5, pp. 1028-1041, 
2011. 

[9] X. Qu, Y. Hou, F. Lam, D. Guo, J. Zhong, and Z. Chen, "Magnetic 
resonance image reconstruction from undersampled 
measurements using a patch-based nonlocal operator," Medical 
Image Analysis, vol. 18, no. 6, pp. 843-856, 2014. 

[10] Z. Zhan, J. Cai, D. Guo, Y. Liu, Z. Chen, and X. Qu, "Fast 
multiclass dictionaries learning with geometrical directions in 
MRI reconstruction," IEEE Transactions on Biomedical 
Engineering, vol. 63, no. 9, pp. 1850-1861, 2016. 

[11] Z. Lai et al., "Image reconstruction of compressed sensing MRI 
using graph-based redundant wavelet transform," Medical Image 
Analysis, vol. 27, pp. 93-104, 2016. 

[12] S. Ravishankar and Y. Bresler, "Data-driven learning of a union 
of sparsifying transforms model for blind compressed sensing," 
IEEE Transactions on Computational Imaging, vol. 2, no. 3, pp. 
294-309, 2016. 

[13] Z. Liang, "Spatiotemporal imaging with partially separable 
funcrions," in 2007 4th IEEE International Symposium on 
Biomedical Imaging: From Nano to Macro, 2007, pp. 988-991. 

[14] B. Zhao, J. P. Haldar, A. G. Christodoulou, and Z. Liang, "Image 
reconstruction from highly undersampled (k, t)-space data with 
joint partial separability and sparsity constraints," IEEE 
Transactions on Medical Imaging, vol. 31, no. 9, pp. 1809-1820, 
2012. 

[15] R. Otazo, E. Candès, and D. K. Sodickson, "Low-rank plus sparse 
matrix decomposition for accelerated dynamic MRI with 
separation of background and dynamic components," Magnetic 
Resonance in Medicine, vol. 73, no. 3, pp. 1125-1136, 2015. 

[16] J. Yao, Z. Xu, X. Huang, and J. Huang, "An efficient algorithm 
for dynamic MRI using low-rank and total variation 
regularizations," Medical Image Analysis, vol. 44, pp. 14-27, 
2018. 

[17] P. J. Shin et al., "Calibrationless parallel imaging reconstruction 
based on structured low-rank matrix completion," Magnetic 
Resonance in Medicine, vol. 72, no. 4, pp. 959-970, 2014. 

[18] K. Jin, D. Lee, and J. Ye, "A general framework for compressed 
sensing and parallel MRI using annihilating filter based low-rank 
Hankel matrix," IEEE Transactions on Computational Imaging, 
vol. 2, no. 4, pp. 480-495, 2016. 

[19] G. Ongie and M. Jacob, "Off-the-grid recovery of piecewise 
constant images from few Fourier samples," SIAM Journal on 
Imaging Sciences, vol. 9, no. 3, pp. 1004-1041, 2016. 

[20] X. Zhang et al., "Image reconstruction with low-rankness and 
self-consistency of k-space data in parallel MRI," Medical Image 
Analysis, vol. 63, p. 101687, 2020. 

[21] J. P. Haldar, "Low-rank modeling of local k-space neighborhoods 
(LORAKS) for constrained MRI," IEEE Transaction on Medical 
Imaging, vol. 33, no. 3, pp. 668-81, 2014. 

[22] J. P. Haldar, "Autocalibrated loraks for fast constrained MRI 
reconstruction," in 2015 IEEE 12th International Symposium on 
Biomedical Imaging (ISBI), 2015, pp. 910-913. 

[23] M. Lustig and J. M. Pauly, "SPIRiT: Iterative self-consistent 
parallel imaging reconstruction from arbitrary " Magnetic 
Resonance in Medicine, vol. 64, no. 2, pp. 457-71, 2010. 

[24] D. Bahri, M. Uecker, and M. Lustig, "ESPIRIT-based coil 
compression for cartesian sampling," in International Society for 
Magnetic Resonance in Medicine, 2013, p. 2657. 

 

3406


