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Abstract— Fast and accurate cancer prognosis stratification
models are essential for treatment designs. Large labeled patient
data can power advanced deep learning models to obtain
precise predictions. However, since fully labeled patient data
are hard to acquire in practical scenarios, deep models are
prone to make non-robust predictions biased toward data
partition and model hyper-parameter selection. Given a small
training set, we applied the systems biology feature selector
in our previous study to avoid over-fitting and select 18
prognostic biomarkers. Combined with three other clinical
features, we trained Bayesian binary classifiers to predict the
5-year overall survival (OS) of colon cancer patients in this
study. Results showed that Bayesian models could provide
better and more robust predictions compared to their non-
Bayesian counterparts. Specifically, in terms of the area under
the receiver operating characteristic curve (AUC), macro F1-
score (maF1), and concordance index (CI), we found that the
Bayesian bimodal neural network (late fusion) classifier (B-
Bimodal) achieved the best results (AUC: 0.8083 ± 0.0736;
maF1: 0.7300 ± 0.0659; CI: 0.7238 ± 0.0440). The single
modal Bayesian neural network classifier (B-Concat) fed with
concatenated patient data (early fusion) achieved slightly worse
but more robust performance in terms of AUC and CI (AUC:
0.7105 ± 0.0692; maF1: 0.7156 ± 0.0690; CI: 0.6627 ± 0.0558).
Such robustness is essential to training learning models with
small medical data.

I. INTRODUCTION

According to an estimate from the World Health Organi-
zation (WHO), colon cancer is one of the top-leading causes
of cancer mortality worldwide. It is estimated to contribute
up to 9% of new cases and deaths in 2020 [1]. Early
and appropriate adjuvant chemotherapy was proved to be
beneficial for prognostic conditions of colon cancer patients
[2]. There is, therefore, an essential need for fast and accurate
prognosis prediction models in the early stages of colon can-
cer. With this aim, several well-known biomarkers have been
proposed and widely studied in predicting cancer prognosis
[3]. However, due to the high dimensionality and small size
nature of biological data, it is not easy to understand the
underlying interactions directly from raw data. Our previous
research utilized systems biology approaches to identify
differentially enriched pathways. Prognostic biomarkers with
biological insights were selected by constructing gene in-
teraction networks (GINs) and calculating the prognostic
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relevance values (PRVs) from microarray data for non-small
cell lung cancer (NSCLC) and breast cancer [4], [5]. We
can select a set of prognostic biomarkers for colon cancer
patients through the same systems biology feature selector
and used deep learning models to predict their prognostic
condition.

Although plenty of deep learning models have been pro-
posed for binary classification tasks, many of them can result
in over-fitting when trained with only small data. The pre-
dictions could be highly sensitive to model hyper-parameter
selection and training/test sets data partition [6]. Recent
works showed that predictions generated from well-tuned
deep neural networks (DNNs) could vary significantly among
different network initialization in patient-specific predictions
[7]. Many works used ensemble learning to improve the
overall prediction accuracy and capture model uncertainty
[7]. However, by learning an ensemble of models, the model
parameters increase significantly with the number of models
used, affecting the computational complexity at the training
time. Instead of learning an ensemble of point estimates,
Bayesian deep learning (BDL) [8] views the parameters
of the neural networks (NNs) as distributions and captures
model uncertainty efficiently [7]. In BDL, we can obtain
the distributions through variational inference [6]. Variational
dropout can be further introduced in a full Bayesian analysis
[9] to avoid over-fitting.

For integrating heterogeneous patient data, bimodal NN
classifiers use distinct subnetworks to extract meaningful
representation from each data modality (late fusion) and then
produce the final prediction through the following merged
network. Our previous research found that bimodal NN
classifiers could provide better performance compared to
various machine learning benchmarks [4]. Following [4],
in this work, we introduce bimodal BDL to predict the
5-year OS of colon cancer patients and compare it with
powerful benchmarks such as the support vector machine
(SVM) and random forest (RF) classifiers. Bimodal and
single concatenation NNs (early fusion), as well as their
Bayesian counterparts, are proposed in this work. The main
challenges of this work result from data scarcity. We want
to build a powerful classifier with few data samples without
over-fitting via BDL and sufficient regularization. Results
showed that BDL-based models consistently provide more
robust and better predictions than SVM and RF. The essential
methods used in this work were summarized in Fig. 1.
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Fig. 1: Schematic illustration of essential techniques. (A) Systems biology feature selector. (B) Bayesian neural network.

II. METHODOLOGY

A. Systems biology feature selector

Since biological data are of high dimensionality and small
data size, appropriate feature selection approaches should
be first applied before training classifiers. We followed our
systems biology feature selector in [4] to identify prognostic
biomarkers as shown in Fig. 1(A). We started with BioGrid
[10] as the candidate network. Multiple GINs were built
on patient subsets split by high/low well-known biomarker
expression levels. They were then trimmed with statistical
model order selection techniques to remove false-positive
connections. Prognosis relevance values (PRVs) were cal-
culated from built networks to identify the final gene feature
subset as the prognostic biomarkers for training classifiers
[5], [4].

B. Bayesian Deep Learning (BDL)

We briefly introduce how we apply the BDL framework
to our model (Fig. 1(B)). Suppose we have a probabilistic
model p that captures the relationship between the observed
and latent (hidden) variables. Let a L−layer neural network
classifier parameterize p. The observed variables are patient
data and label, and the latent variables are the parameters
of the neural network. Denote the patient gene expression
profiles and clinical information of N patients as X =
{xi}Ni=1 and C = {ci}Ni=1, respectively. The prediction
targets, Y = {yi}Ni=1, are modeled as one-hot categorical
distributions, indicating either poor (yi = [1 0]T ) or good
(yi = [0 1]T ) prognosis class. The weights and biases of
the neural network, W = {wi}Ll=1, are modeled as Gaussian
distributions. To simplify the notation, we collect X and C
as V = {X,C} in the following sections.

1) Variational Inference: In practice, it is hard to evaluate
and directly represent p(W |V, Y ) in a tractable fashion.
Following the mean-field approach [8] with a factorial dis-
tribution, q, such that

q(W ) = q
(
{wi}Ll=1

)
= ΠL

i=1q (wi) , (1)

we can derive the evidence lower bound (ELBO) of p(Y |V )
as

L(Y |V,W, q)

, log p(Y |V )−KL (q(W )‖p(W |V, Y ))

= Eq(W ) [log p(Y |V,W )p(W )− log q(W )] .

(2)

When q(W ) = p(W |V, Y ), the KL divergence is zero so
that the ELBO is equal to the true posterior. By maximizing
the ELBO, we can optimize W through back-propagation.

2) Model Evaluation: At testing time, we make predic-
tions with the sample mean of the M samples of the output
one-hot categorical distribution y:

ypred = Ep(Y |V )y ≈
1

M

M∑
i=1

Ep(Y |V,W i)y, W i ∼ q(W ),

(3)
where M ranges usually from 10 to 1000.

3) Variational Dropout: Classic dropout approaches re-
quire certain neurons to be masked out with a dropout
probability, pdrop, at the training time. The weights are scaled
by pdrop at the testing time [11]. On the other hand, in
variational dropout [9], multiplicative Gaussian noises with
mean 1 and learnable standard deviation α are introduced
to the weights of NNs. It is reported that both approaches
achieved similar performance in image classification tasks
[12]. One major advantage of variational dropout is that
it maintains identical means of the weights. No scaling at
the testing time is needed, which allows us to perform full
Bayesian analysis [9]. Besides L2-regularization, we further
applied variational dropout to BDL-based models to avoid
over-fitting in this work.

III. DATASET AND RESULTS

A. Dataset

We collected 12 GEO datasets (GSE9254, GSE11831,
GSE12945, GSE13067, GSE13294, GSE13471, GSE14333,
GSE17538, GSE18088, GSE18105, GSE20916, and
GSE29623) of colon cancer patients from National Center
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for Biotechnology Information (NCBI) as a cohort. Our
preliminary research collected 815 patients with full
microarray data for systems biology feature selection. We
further filter patients with full clinical and microarray data
for bimodal learning and collected 50 patients in the training
set and 152 patients in the test set. The rest 765 patients
are without labels will not be utilized here. They could
be exploited for semi-supervised learning models, which
will be a topic for our future work. Note that we included
more patients in the test set to ensure the performance is
less biased by the small patient data size. We included
18 prognostic biomarkers (APP, CAND1, COPS5, CUL1,
EED, EGFR, ELAVL1, GRB2, HDAC1, RPA2, EPCAM,
CD44, ALCAM, PROM1, ABCB1, ABCC1, ABCG2, and
ALDH1A1) and three clinical features (gender, tumor grade,
and cancer stage), which are the only features available
among all GEO datasets. We labeled patients with the OS
event before 5 years as the poor prognosis class and patients
who survived over five years as the good prognosis class.

TABLE I: The patient distribution of the cohort studied in
this work.

Features Train (N = 50) Test (N = 152)

Prognosis Good 21 (42.00%) 65 (42.76%)
Poor 29 (58.00%) 87 (57.24%)

Gender Female 32 (64.00%) 64 (42.11%)
Male 18 (32.00%) 88 (57.89%)

Grade I 2 (4.00%) 11 (7.24%)
II 32 (64.00%) 120 (78.95%)
III 16 (32.00%) 21 (13.82%)

Stage I 4 (8.00%) 15 (9.87%)
II 14 (28.00%) 35 (23.03%)
III 16 (32.00%) 52 (34.24%)
IV 16 (32.00%) 50 (32.89%)

B. Experimental setups

The following models were included into comparison:
• SVM: a support vector machine with radial basis kernel.
• RF: a random forest classifier.
• Concat: an NN classifier fed with V , a direct concate-

nation of X and C (early fusion).
• Bimodal: a bimodal NN classifier (late fusion) [5], [4].
• B-Concat: a Bayesian NN classifier fed with V (early

fusion).
• B-Bimodal: a Bayesian bimodal NN classifier (late

fusion).
We adopted NADAM [13] optimizer with default hyper-
parameters for all neural network classifiers except for the
learning rate, which was decided at the beginning of the
training process. The model hyper-parameters were obtained
through 4-fold cross-validation (4-CV). We used area under
the receiver operating curve (AUC), unweighted F1-score
(macro F1-score, maF1) [14], concordance index (CI) [15],
accuracy (ACC), Kaplan Meier analysis (KM-plot) [16], and
log-rank test [17] as performance evaluation metrics. We

retrieved the hard classification threshold by maximizing
the Youden index [18] to calculate ACC and macro F1.
We adopted the same test set for all models to have fair
comparisons. All models were implemented with Python:
SVM and RF were built with scikit-learn packages [19], and
BDL-based models were trained with Zhusuan [20] built with
TensorFlow backend. The 95% confidence intervals for all
metrics reported in Table II were obtained through the test
set bootstrapping with 1000 bootstrap sets.

TABLE II: Performance summary: Half of the 95% confi-
dence intervals were provided in the parentheses.

Models AUC (%) maF1 (%) CI (%) ACC (%)

SVM 66.74 (0.00) 60.69 (3.89) 61.46 (0.00) 57.24 (7.89)
RF 52.09 (1.92) 52.56 (3.89) 50.54 (1.85) 55.26 (7.89)

Concat 58.28 (9.23) 58.93 (11.18) 53.28 (5.48) 60.53 (9.22)
Bimodal 76.18 (7.64) 71.35 (8.33) 68.13 (4.39) 71.71 (8.22)
B-Concat 71.05 (6.92) 71.56 (6.90) 66.27 (5.58) 71.05 (6.92)
B-Bimodal 80.83 (7.36) 73.00 (6.59) 72.38 (4.40) 78.29 (6.26)

C. Results

1) NN-based models performed well with sufficient regu-
larization: It can be observed that most NN-based models
achieved better overall performance compared to SVM and
RF from Table II. They were constrained to be simpler via
sufficient regularization. However, Concat exhibited worse
performance and wider confidence intervals than SVM in
almost all metrics. This result seems to indicate that Concat
could not combine different data modalities as well as
Bimodal. Its wide confidence interval on every metric showed
that it is sensitive to data partition.

2) Bimodal NNs excel in combining heterogeneous data
types: Heterogeneous data types such as microarray and
clinical data were combined well through bimodal NNs. Both
Bimodal and B-Bimodal performed better than Concat and B-
Concat in most metrics, respectively, with approximately the
same confidence interval widths. We only observed a slight
increase in the confidence interval of AUC for B-Bimodal
compared to B-Concat. The results showed that bimodal
NNs are better at combining information shared between
heterogeneous data types.

3) Bayesian NNs achieved more robust performance:
Comparing B-Concat and B-Bimodal to their non-Bayesian
counterparts, we observed significant performance advan-
tages. B-Concat was superior to Concat in all metrics by
at least 0.1 and had narrower confidence intervals. With
approximately the same confidence intervals, B-Bimodal
outperformed Bimodal in all metrics. The results showed
that we could obtain more robust predictions with similar
architectures via BDL.

4) Bayesian NNs showed significant stratification in sur-
vival analysis: The results for KM analysis were summarized
in Fig. 2. Except for Concat, all NN-based models showed
significant stratification and were much better than SVM and
RF. In particular, B-Concat and B-Bimodal achieved much
superior stratification.
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(a) SVM (b) RF (c) Concat

(d) Bimodal (e) B-Concat (f) B-Bimodal

Fig. 2: Survival analysis: the horizontal axis represents the
time (in months) and the vertical axis is the survival rate.

5) Bayesian NNs were less sensitive to hyper-parameter
selection: We summarized each hyper-parameter’s perfor-
mance with its average performance over 4-CV splits to
visualize the sensitivity of model hyper-parameter selection
to its stratification performance. Therefore, we could, for
each model, estimate the test performance distribution for
every set of hyper-parameters searched during the 4-CV
training process. The PDFs for AUC were illustrated in
Fig. 3. Interestingly, we found that B-Concat and B-Bimodal
had much higher AUCs and were much more concentrated
than their non-Bayesian counterparts. This result suggests
that BDL could lower the sensitivity of hyper-parameter
selection even in bimodal NNs. The hyper-parameter search
space, therefore, could be reduced to save computational
complexity.

Fig. 3: Probability density functions of AUCs for various
model hyper-parameter selection.

IV. CONCLUSION

In this work, we introduced bimodal BDL to predict the
5-year OS for colon cancer patients. With BDL, NN models
performed much better and were more robust to model hyper-
parameter selection and data partition. Our results showed
that bimodal BDL could incorporate two data modalities
well. With sufficient regularization and appropriate feature
selection, BDL provided superior performance even with
small patient data. We hope that these results shed light

on the possibilities to use BDL in various other medical
applications.

REFERENCES

[1] Rebecca L Siegel, Kimberly D Miller, and Ahmedin Jemal. Cancer
statistics, 2019. CA: a cancer journal for clinicians, 69(1):7–34, 2019.

[2] Gabrielle Jongeneel, Thomas Klausch, Felice N van Erning, Geral-
dine R Vink, Miriam Koopman, Cornelis JA Punt, Marjolein JE
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