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Abstract— While automatic tracking and measuring of our
physical activity is a well established domain, not only in
research but also in commercial products and every-day life-
style, automatic measurement of eating behavior is significantly
more limited. Despite the abundance of methods and algorithms
that are available in bibliography, commercial solutions are
mostly limited to digital logging applications for smart-phones.
One factor that limits the adoption of such solutions is that they
usually require specialized hardware or sensors. Based on this,
we evaluate the potential for estimating the weight of consumed
food (per bite) based only on the audio signal that is captured by
commercial ear buds (Samsung Galaxy Buds). Specifically, we
examine a combination of features (both audio and non-audio
features) and trainable estimators (linear regression, support
vector regression, and neural-network based estimators) and
evaluate on an in-house dataset of 8 participants and 4 food
types. Results indicate good potential for this approach: our
best results yield mean absolute error of less than 1 g for 3 out
of 4 food types when training food-specific models, and 2.1 g
when training on all food types together, both of which improve
over an existing literature approach.

I. INTRODUCTION

In the context of dietary monitoring, various wearable
sensors have been proposed in order to measure different
parameters of eating behavior. One of the first sensors that
was used is the in-ear microphone: the in-ear placement
enables the capturing chewing sensors clearly as they are
transmitted through the skull during mastication [1].

Alternative sensors have also been studied in literature.
A piezoelectric sensor has been used in [2]; the sensor is
attached on the skin close to the jaw that captures mus-
cle movement during mastication. The periodic nature of
chewing is also present in the piezoelectric sensor’s signal
and is used to detect chewing. Alternative placements of
the piezoelectric sensor have also been examined, such as
attached to smart glasses or to neck collars [3] [4]. Surface
electromyography (EMG) has also been used for chewing
detection [5] [6], however, is currently one of the least
discrete solutions.

Sensors for estimating the weight of a meal (or bite) have
also been proposed, and achieve relatively high effectiveness
and low errors. However, the sensors require manual place-
ment and activation (e.g. plate weight scale [7]) or are part of
the table [8] and thus cannot be used in free-living conditions
such as eating outside or on-the-go.

More recently, the interest has been shifting to off-the-
shelf solutions to eliminate the need for specialized hardware
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as well as decrease the sensors’ intrusiveness. In particular,
the 3D accelerometers and gyroscopes that are commonly
embedded in commercial smart-watches can be used to
ambiently detect eating gestures (i.e. the repeated movements
of bringing food to the mouth from a plate, tray, etc) and
achieve very promising results in challenging, free-living
conditions [1] [9] [10] [11]. Alternatively, an accelerometer
mounted on the temporalis [12], [13] has also been used to
detect muscle contraction during mastication with promising
effectiveness.

Additionally, analysis of photos taken with smart phones
can provide detailed information about eating habits, includ-
ing types of consumed food, ingredients, etc (for example,
the goFOODTM [14] system can estimate the calorie and
macro-nutrient content of a meal based on either two photos
of the meal or a short video). A single photo is used in [15]
to perform segmentation, recognition, and volume estimation
of different foods, and results show similar effectiveness to
methods that require multiple photos of the meal.

In this work, we propose a method for estimating bite
weight using the audio signal of commercially available ear
buds. Our approach includes extracting features that are used
to train bite weight estimators, based on annotations of start
and stop time-stamps of chews and food type. We evaluate
different feature sets and different types of estimators on an
in-house dataset we have collected, using leave-one-subject-
out (LOSO) training and testing. We examine two cases, one
where food type information is available (corresponding to
a use-case where food information is obtained by asking the
user directly or by some food-type recognition system such
as [14]) and one where it is not (corresponding to a use-case
where only chewing activity is detected using some audio-
based automated method such as [16]).

II. RELATED WORK

An algorithm for bite-weight estimation, also from sound
captured by an in-ear microphone, has been proposed in [17].
Audio was recorded at 44 kHz; a total of 8.64 hours were
recorded from eight individuals.

The algorithm proposed in [17] used 8 features (Table I
of [17]) that can be extracted from a sequence of chews.
Of these 8 features, 7 can be computed solely from the start
and stop time-stamps of the chews, and only 1 requires audio
signal (i.e. mean signal energy). For each chewing bite, these
8 features are extracted 6 times: from the entire chewing
bout, from the 1st, 2nd, and 3rd third of the chewing bout,
and from the chewing bouts that consist of the first 3 and 5
chews only, respectively. This yields 48 features; two more
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Fig. 1: Example of audio signal: the first three chews of
an apple bite are down, along with the manual ground-truth
(gray boxes).

features are computed and a final vector of 50 features is
produced.

A linear regression (with bias) model is used to estimate
bite weight. A different model is trained for each food type
(a total of three food types are used: potato chip, lettuce,
and apple). Two methods of feature selection are examined:
manual selection based on Spearman’s correlation coefficient
(between each feature and the bite-weight) and step-wise
regression fit. Authors conclude that both methods yield
similar results.

In this work, we differentiate significantly from [17] by
(a) using commercially available ear buds, (b) focusing
on audio-based features and exploring different aggregation
methods, and (c) comparing different regression models for
bite weight estimation.

III. BITE-WEIGHT ESTIMATION ALGORITHM

Our proposed approach aims to estimate the weight of a
single bite. In short, we first extract a set of features (we
examine both non-audio and audio features) which we then
use to train an estimation model. Models are trained in the
typical LOSO scheme, where a different model is trained
for each subject of the dataset using the data from the other
subjects each time.

A. Feature extraction

We use two distinct sets of features. The first set (non-
audio features) does not depend on the audio signal, but only
on the start and stop time-stamps of the chews (Figure 1).
Note that in this work the start and stop time-stamps have
been determined manually. Specifically, let t1[i] and t2[i]
for i = 1, . . . , n denote the start and stop time-stamps of
a bout of n chews. We compute the following six features:
number of chews (i.e. n), mean and standard deviation of
chew duration (chew duration is t2[i]− t1[i]), and mean and
standard deviation of chewing rate (instantaneous chewing
rate is estimated as t1[i]− t1[i− 1]), and food type (as is a
categorical variable).

The second set of features is based on the audio signal.
A challenge lays in the fact that (a) each chewing bout has
a different duration and different number of chews, (b) each
individual chew has a different duration. To overcome this,
we follow a two-step process: first, one feature vector is
extracted from each individual chew of a single chewing
bout, and then, all the features vectors of the chews that
belong to a single chewing about are aggregated together

to produce a final, single feature vector for the chewing
bout (this final vector is then used for training the weight
predictors).

In the first step, the features that we extract from each
individual chew are the ones used in [7], [18]. The features
include signal energy in log-scale energy bands, higher
order statistics (including skewness and kurtosis), and fractal
dimension. Estimating each of those features is independent
of the length of the available audio signal (i.e. from chew
duration); this allows us to obtain comparable values for each
feature among chews of varying duration. After extracting
the features for the entire dataset we standardize them by
subtracting the mean (of each feature) and dividing by its
standard deviation.

In the second step, we aggregate the features vectors of
the chews of each chewing bout. We examine two similar ap-
proaches to this: bag-of-words (BoW) and vectors of locally
aggregated descriptors (VLAD). Centroids are obtained over
the available training portion of the dataset (AIC is used for
selecting the number of centroids), which are then used both
on the train as well as the test portions of the dataset.

B. Bite-weight estimators

To estimate the bite weight from the available features,
we examine four different algorithms. The first estimator we
evaluate is LR, similar to [17]. We have also experimented
with models that include cross-product terms but have found
that the overall effectiveness is not affected significantly.

The second algorithm is support vector regression (SVR).
We use a radial-basis function (RBF) kernel, and use a grid
search for hyper-parameters C and γ by randomly splitting
the data from the m−1 subjects to 70% for training and 30%
for validation. We search for C in 10i, i = −2,−1, 0, 1, 2
and for γ = 10in−1, i = −1, 0, 1, 2, 3, where n is the length
of the feature vector.

We also examine classic feed-forward neural networks
(FFNN). We consider architectures with either 2 or 3 hidden
layers, and 5, 10, 15, and 20 neurons per layer (thus, a total
of 8 distinct architectures, as we do not consider architectures
with different number of neurons per layer). The choice of
the architecture is treated as the hyper-parameter of this
model and is selected based on a 90% training and 10%
validation split of the m − 1 subjects, and is thus different
for each subject. Training minimizes the mean absolute error
(MAE); learning rate is set to 0.01 and the maximum number
of epochs is 1, 000. We use the BFGS Quasi-Newton back-
propagation algorithm.

Finally, we also examine generalized regression neural
networks (GRNN) [19] with Gaussian kernel. Similarly to
the previous models, we also select the hyper-parameter σ of
the kernel using a train-validation split on the m−1 subjects.

IV. DATASET

To evaluate our approach we have collected an in-house
dataset. A total of 8 participants were enrolled for the data
collection trials (6 males and 2 females, age 25±1.07 years,
body-mass index 25.49 ± 3.06). Four different food types
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were consumed: apple, banana, rice, and potato chips. These
four types were selected as they have a unique combination
of crispiness (apple and potato chips) and wetness (apple and
banana). The dataset includes 2 hours of eating and contains
a total of 473 chewing bouts and 7.539 chews.

Audio signals were collected by using commercially avail-
able Samsung Galaxy Buds. We have created a custom
Android application that captures synchronized audio (at
44.1 kHz, 16 bit) from the ear buds and plate weight (at 1 Hz)
from a Bluetooth-enabled plate scale. The plate weight scale
has been used to derive ground truth values for bite weight.
A video recording of each session has also been captured to
further assist us in the annotation process.

V. EVALUATION

To evaluate our approach we perform various combina-
tions of feature sets and estimation models. Given the non-
audio based feature set and the two methods of aggregating
the audio based features, we examine the following five
combinations: non-audio features (f1), audio with BoW (f2),
audio with VLAD (f3), combination of non-audio and audio
with BoW features (f4), and combination of non-audio and
audio with VLAD features (f5). For each of these feature
sets we examine four estimators (Section III-B): LR, SVR,
FFNN, GRNN. Finally, we train five different models per
combination: the first four are food specific, while the fifth
is trained on the data from all food types. Table I shows the
mean absolute error per experiment, and Table II shows the
mean absolute percentage error (%) in the same structure.
All experiments are performed in LOSO fashion; thus, each
result is the mean across the 8 participants of our dataset.

We also present evaluation results from our implementa-
tion of the algorithm of [17] (Section II).

Based on the results, the combination of both non-audio
and audio based features improves the estimation accuracy
(yielding lower error) for most cases. This is more evident
when training on all food types together (Figure 2). This
conclusion is also inline with the results of the algorithm of
[17] which uses a combination of 7 non-audio features and 1
audio feature, as it is better from our non-audio and audio-
only approaches while slightly worse from our non-audio
and audio combinations.

Based on the results, FFNN and GRNN are able to achieve
the best results (lowest errors) compared to LR and SVR.
When training on a single food type, GRNN-based models
with f4 achieve the lowest MAE (close to or less than 1
g) and similarly low standard deviation of absolute errors.
The only exception is for potato chips where FFNN achieves
the lowest errors. However, GRNN achieves the second
lowest errors and the difference (from FFNN)) is very small:
0.25 (0.4) g for GRNN versus 0.20 (0.4) for FFNN. When
training on all food types together, FFNN with f5 seems to
achieve the lowest errors.

Comparing the two different types of aggregating audio
features (from chews to chewing bouts) there seems to be
no clear conclusion about whether BoW is better of VLAD.
This holds both for when using only audio features (i.e. f2 vs.

TABLE I: Mean and standard deviation absolute errors per
algorithm and feature set. Best result (lowest error) in red.

Apple Banana Rice Chips All

LR
f1 3.02 (2.3) 5.89 (2.8) 3.80 (2.5) 0.93 (0.7) 4.94 (3.4)
f2 4.13 (3.4) 5.82 (3.9) 3.82 (2.2) 1.23 (0.8) 3.70 (3.2)
f3 4.83 (3, 7) 5.57 (3.4) 5.06 (3.2) 1.10 (0.8) 3.86 (3.4)
f4 3.65 (2.5) 5.54 (3.3) 3.86 (3.1) 1.02 (0.7) 3.24 (2.8)
f5 3.15 (2.2) 5.97 (3.3) 3.74 (2.7) 0.92 (0.7) 3.44 (3.0)

SVR
f1 3.18 (2.2) 6.30 (3.2) 3.97 (2.7) 0.97 (0.8) 4.52 (3.3)
f2 4.76 (3.5) 5.01 (3.2) 4.44 (3.0) 1.17 (0.8) 3.66 (3.2)
f3 5.07 (3.3) 5.11 (3.2) 5.02 (3.2) 1.12 (0.8) 3.76 (3.5)
f4 3.57 (2.3) 5.56 (3.2) 3.19 (2.6) 1.05 (0.8) 3.16 (2.9)
f5 3.00 (2.4) 5.44 (3.4) 3.68 (2.7) 1.00 (0.8) 3.02 (2.5)

FFNN
f1 3.70 (2.7) 5.17 (3.6) 4.72 (3.2) 0.93 (0.8) 3.31 (3.0)
f2 4.19 (3.7) 4.68 (3.8) 4.29 (3.4) 1.00 (0.9) 3.86 (3.4)
f3 3.64 (2.6) 4.10 (3.2) 3.52 (2.1) 0.81 (0.6) 4.10 (3.4)
f4 3.56 (2.7) 5.56 (3.5) 4.52 (3.0) 1.22 (0.9) 2.77 (2.7)
f5 2.60 (2.4) 2.55 (3.0) 2.22 (2.4) 0.20 (0.4) 2.12 (2.4)

GRNN
f1 2.39 (1.9) 3.82 (2.3) 3.27 (2.1) 0.82 (0.6) 3.59 (2.8)
f2 3.17 (3.0) 2.85 (2.2) 2.50 (2.4) 0.87 (0.8) 4.14 (3.6)
f3 4.43 (4.0) 4.78 (2.9) 4.01 (2.8) 1.04 (0.7) 6.19 (3.4)
f4 1.10 (1.8) 0.89 (1.1) 0.93 (1.4) 0.25 (0.4) 3.90 (3.4)
f5 4.30 (3.2) 5.66 (3.8) 3.61 (2.9) 1.08 (0.8) 3.80 (3.4)

Amft et al.
3.26 (2.7) 5.96 (2.9) 5.22 (3.2) 1.10 (0.8) 3.37 (3.0)

TABLE II: Mean and standard deviation of absolute relative
(%) errors per algorithm and feature set. Best result (lowest
error) in red.

Apple Banana Rice Chips All

LR
f1 31 (27) 54 (36) 47 (46) 47 (59) 57 (26)
f2 40 (39) 57 (43) 44 (45) 60 (73) 38 (34)
f3 46 (44) 44 (41) 51 (53) 49 (34) 40 (47)
f4 38 (29) 50 (37) 47 (51) 40 (49) 32 (36)
f5 28 (27) 55 (40) 43 (42) 37 (44) 35 (32)

SVR
f1 28 (24) 56 (38) 48 (48) 47 (47) 53 (59)
f2 47 (40) 42 (38) 43 (40) 54 (43) 38 (33)
f3 44 (36) 42 (38) 47 (48) 50 (39) 40 (43)
f4 37 (27) 52 (39) 38 (46) 40 (49) 31 (32)
f5 27 (25) 51 (38) 42 (41) 48 (39) 31 (36)

FFNN
f1 33 (25) 46 (42) 50 (38) 40 (28) 33 (29)
f2 36 (60) 40 (42) 41 (41) 50 (45) 40 (29)
f3 33 (58) 29 (21) 36 (45) 42 (42) 46 (41)
f4 30 (26) 56 (43) 45 (44) 56 (58) 39 (31)
f5 26 (26) 26 (32) 25 (35) 15 (28) 20 (27)

GRNN
f1 22 (18) 36 (30) 40 (38) 34 (52) 35 (31)
f2 28 (25) 19 (17) 28 (38) 35 (57) 42 (37)
f3 36 (38) 32 (32) 44 (58) 51 (54) 64 (37)
f4 09 (14) 06 (10) 09 (20) 20 (45) 40 (43)
f5 43 (31) 57 (50) 42 (47) 44 (46) 36 (37)

Amft et al.
30 (23) 54 (33) 60 (53) 55 (73) 34 (31)
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Fig. 2: Mean absolute error per feature set and estimator
model when training on all food types together.

f3), as well as for when combining them with the non-audio
features (i.e. f4 vs. f5). The only exception is GRNN that
seems to benefit from the use of BoW; this can be attributed
to the stricter quantization of the feature space that BoW
applies.

Finally, MAE is quite lower for potato chips compared to
the other food types. However, this is not a result of “better”
trained estimation models, but of the fact that potato-chip
bites are generally lighter (than apple bites for example).
This can be confirmed by comparing MAPE errors that are
shown in Table II.

Evaluation results for the algorithm of Amft et al. [17]
are comparable with our approach. The are clearly surpassed
though by our FFNN and GRNN based approaches. Overall,
MAE is higher in our dataset compared to the values reported
by the authors in their original work of [17]. This can be at-
tributed to the more challenging nature of our dataset as well
as differences in the sound captured by our commercially
available ear buds and their custom-made sensor.

VI. CONCLUSIONS

In this work we have presented an approach for estimating
bite weight from audio signal captured by commercially
available ear buds. Using commercially available hardware
is essential to enable higher adoption rates for such dietary
monitoring approaches, since they reduce invasiveness and
discomfort of the end user.

Our approach uses a combination of non-audio and audio
features which are used to train estimation models. We
evaluate on an in-house dataset of approximately 2 hours.
Our best results are obtained by training food-specific GRNN
models and non-food-specific FFNN models. GRNN models
yield MAE of approximately 1 g or less, and FFNN yield
a total MAE of 2.12 g. We also compare with an existing
algorithm from literature and achieve lower errors for all
cases.

An important limitation of our approach is that it requires
annotations for the start and stop time-stamps of individual
chews, as well as food type annotations (for food-type–
specific models). Future work includes evaluating on bigger
and more diverse datasets with more food types and different
data-capturing conditions (closer to free-living) as well as
evaluating in combination with audio based chewing detec-
tors and automatically detected food types.
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