
  

  

Abstract— Cardiovascular diseases are the number one cause 

of death worldwide.  Detecting cardiovascular diseases in its 

early stages could effectively reduce the mortality rate by 

providing timely treatment. In this study, we propose a new 

methodology to detect arrythmias, using 2D Convolutional 

Neural Networks. The main characteristic of the proposed 

methodology is the use of 15 x15 pixels gray-level images, 

containing the values of a heartbeat of the ECG signal. This 

work aims to detect 17 arrythmias. To validate and test the 

proposed methodology,  MIT-BIH database, the main 

benchmark database available in literature, was used. When 

compared to other results previously published, the obtained 

precision, 92.31%, is in the state-of-the-art. 

Clinical Relevance— The presented work provides an 

automatic method to detect arrythmias in ECG signals by a new 

methodology.   

I. INTRODUCTION 

According to the World Health Organization [1], 
cardiovascular diseases (CVDs) are the number one cause of 
death worldwide, claiming about 17.9 million lives each year. 
CVDs are a group of diseases of the heart and blood vessels 
that include rheumatic heart disease, cerebrovascular disease, 
coronary heart disease and other conditions. Four out of 5 
deaths from CVDs are due to heart attacks and strokes, and one 
third of these deaths occur prematurely in people under 70 
years of age.  

According to the Cardiovascular Statistics Brazil 2020 
report [2], of the Brazilian Society of Cardiology, CVDs were 
the main cause of death in Brazil in the year 2017. Among 
CVDs, ischemic heart diseases were the cause number 1. 

Detecting CVDs in its early stages could effectively reduce 
the mortality rate by providing timely treatment [3]. One of the 
common sources of CVDs is cardiac arrhythmia, which is 
characterized by the fact that heartbeats deviate from your 
normal pattern. A normal heartbeat varies with age, body size, 
activity and emotions. In cases where the heartbeat seems fast 
or slow, the condition is known as a palpitation. An arrhythmia 
does not necessarily mean that the heart is beating too fast or 
too slowly, it indicates that the heart is following an irregular 
beating pattern. 

Conventionally, for the diagnosis of arrhythmias, 
cardiologists visually inspect 12-lead ECG waveforms in a 
digital image format [4]. It is common that ECG signals lasting 
many hours and even days, like Holter monitoring, need to be 
analysed. This is a very time-consuming and exhausting 
procedure, which significantly limits the impartiality of the 
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diagnosis. This limitation can be eliminated with the use of 
computational techniques for the automatic detection of 
arrhythmia and ECG classification. 

In the literature, we have identified two groups of work 
developed for the automatic detection of arrhythmias. The first 
group comprises older works that used classic machine 
learning tools, while the second group comprises more recent 
works that use deep learning techniques, such as convolutional 
and recurrent neural networks. 

Among others, in the first group of works we identified the 
use of the following classic machine learning techniques: 
wavelet transform [5], support vector machine [6], multilinear 
single value decomposition [7], hidden Markov models [8], 
etc.  

In the second group of works, we identified two trends. The 
first one comprises the works that use only Convolutional 
Neural Networks (CNNs), the most frequent being one-
dimensional networks [9][10]. Other studies use two-
dimensional CNNs [11][12], converting the one-dimensional 
ECG tracings into a 2D array with dimensions of 128x128 or 
64x64, for example. The second trend includes works that use 
hybrid architectures, a serial composition of CNN and 
Recurrent Neural Networks (RNNs) [13][14][15]. In this 
hybrid architecture, CNNs are used to feature extraction. The 
features extracted, after a dimensionality reduction step, 
through maxpooling layers, feed the input of a RNN, 
responsible for the ECG classification,  according to normal or 
altered states (arrythmias). 

In this work, we also used 2D CNNs for the classification 
of ECG, however, 2D ECG data was composed in a different 
way from that had been used in [11][12]. To obtain the input 
signal of the 2D CNN, 225 samples of a heartbeat of one-
dimensional ECG signal are converted into a 15 x15 pixels 
gray-level image. From a computational point of view, 
working with smaller images puts less stress on low memory 
devices when,  for example, the implementation is embedded 
in mobile devices. 

The advantage of working with a 2D signal instead of a 1D 
signal, is that the convolution operation with 2D kernel 
explores new neighborhood relations (neighborhoods above 
and below) in addition to the neighborhood relation already 
explored with 1D convolution operation (neighborhoods on 
the left and on the right).  

To validate and test the proposed methodology we use the 
most used database to benchmark algorithms developed for 
detecting arrhythmias, known as the MIT-BIH database [16]. 
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Most published academic papers, that use this database, 
classified 5 or 8 15 cardiac disfunctions. Few studies have been 
carried out aiming to classify all 17 classes present in MIT-
BIH database (normal ECG, pacemaker signal, and 15 cardiac 
disfunctions) [10][6].  

We also intend to present a performance comparison 
between 2D CNN, 1D CNN and RNNs (Long-Short-Time-
Memory -LSTM and Gated-Recurrent-Units - GRU),  in the 
classification of the 17 classes present in the MIT-BIH 
database, a gap little explored in the literature. 

II. METHODOLOGY 

A. Materials 

In this work, the ECG arrhythmia database of MIT-BIH 

was used. The ECG signals, obtained from 47 patients, were 

sampled at a rate of 360 Hz. The base consists of 48 annotated 

records, with an approximate duration of 30 minutes of 

heartbeat [9]. 17 classes are present in the database: Normal 

Sinus Rhythm (NSR), pacemaker rhythm (PR) and the 

following 15 cardiac disfunctions:  Atrial Premature Beat 

(APB), Atrial Flutter (AFL), Atrial Fibrillation (AFIB), 

Supraventricular Tachyarrhythmia (SVTA), Pre-excitation 

(WPW), Premature Ventricular Contraction (PVC), 

Ventricular Bigeminy (B), Ventricular Trigeminy (T), 

Ventricular Tachycardia (VT), Idioventricular Rhythm 

(IVR), Ventricular Flutter (VFL), Fusion of Ventricular and 

Normal Beat (F), Left Bundle Branch Block Beat (LBBBB),  

Right Bundle Branch Block Beat (RBBBB), Second-Degree 

Heart Block (SDHB).  

For each heartbeat, a one-dimensional record with 225 

samples around an R peak, not necessarily with it centralized, 

was extracted. 150 records of each class were randomly 

extracted, totaling 2550 records. 

 

B. Pre-Processing 

From each one-dimensional record was generated one 

intensity image. Figure 1 illustrates the steps employed in this 

generation.  

 

 
Figure 1. Steps to obtain a 15 x 15 pixels gray-level image of a record with 
225 samples extracted around an R-wave peak: record extraction, record 

normalization, 1D-2D conversion, gray-level image generation. 

 

The normalization step, shown in equation (1), aims 

obtaining sample values in the range [0 255]. 

 

𝑠𝑛 =
𝑠−𝑠𝑚𝑖𝑛

𝑠𝑚𝑎𝑥−𝑠𝑚𝑖𝑛
. 255                                 (1) 

where:  
 𝑠𝑛: 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 

    𝑠: 𝑛𝑜𝑛 − 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 

    𝑠𝑚𝑖𝑛: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 

    𝑠𝑚𝑎𝑥: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 

 

In the gray-level image, the pixels intensities correspond to 

the values of the normalized heartbeat ECG signal. Figure 2 

shows corresponding examples of the process steps presented 

in Figure 1. 

 

 
(a)                                                       (b) 

                       
(c) 

 
(d) 

Figure 2. Corresponding examples of process steps shown in Figure 1: (a) 

Extracted record; (b) Normalized record; (c) 1D-2D conversion and (d) gray-

level image obtained.  

 

C. Deep Neural Networks and Training Parameters 

Figure 3 shows the architectures of neural networks 

implemented. The 1D and 2D CNN architectures are shown in 

Figure 3(a), while the LSTM and GRU architectures are shown 

in Figure 3(b).  

                   

                                    
                                     (a)                                         (b) 
 Figure 3: (a) 1D or 2D CNN architecture and (b) LSTM or GRU 

architecture 
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The differences between the 1D CNN and 2D CNN 

architectures are the kernel sizes and the input layer. In 1D 

CNN, the kernel size is [1 n], while in 2D CNN the kernel size 

is [n n]. Both convolutional kernels have 𝑛 = 2. The size of 

input layer is [1 225] in 1D CNN, corresponding to a vector 

with 255 values of a heartbeat. The size of input layer is 15x15 

in 2D CNN, and corresponds to a gray-level image, as shown 

in Figure 2(d). In the CNN architecture there are seven 

features extraction blocks, consisting of the following layers: 

Conv→Batch→Relu. The number of filters of the 

convolutional layers is equal to 96. A stride of 1 is used. In 

the sequence, there are the following layers: fully connected 

layer (200 neurons)→ dropout layer → fully connected layer 

(17 neurons) →softmax layer → classification layer.      

The recurrent neural networks, LSTM or GRU, are formed 

by the following layers: a sequence input layer (input size = 

225) → a LSTM or GRU layer (4096 neurons) → a fully 

connected layer (512 neurons), a dropout layer → a fully 

connected layer (17 neurons) → a softmax layer and a 

classification layer. 

 The methodology used for training and testing was the 5-

fold-cross-validation. In each fold 80% of data is used for 

training and 20%, for validation. In the training, after an 

exhaustive search, the following parameters were chosen bath 

size = 512, L2 regularization factor = 0.1, dropout factor = 

0.5, maximum number of epochs = 2000. For learning rate, a 

piecewise schedule was employed, with initial learning rate 

= 0.01, a drop period = 200 epochs and a drop factor = 0.75. 

Figure 4 shows the precision during a training section of a 2D 

CNN. At the beginning of the training, due to the high values 

of the learning rate, several oscillations occurred. However, 

as the learning rate decreased with the increase in the number 

of epochs, these oscillations also decreased. Three 

optimization methods were evaluated: Stochastic Gradient 

Descent with Momentum - SGDM, Adaptive Moment 

Estimation Optimizer - ADAM and Root Mean Square 

Propagation - RMSProp. The best performances were 

obtained with the SGDM optimizer. We notice that the best 

performance of the training, evaluated in the validation set, 

does not necessarily occur at the end of the training. That is 

why we use the MATLAB checkpoint feature, recording the 

network with the best performance during the training. 
The experiments were performed using MATLAB® 

version 2018b, a 3.2 GHz Intel i7-8700 processor computer 
with 16 GB RAM and 8 GB GeForce GTX 1070 GPU. 

D. Evaluation Metrics 

The following metrics were used for evaluation: accuracy 

(Acc), sensitivity (Sens) or recall, specificity (Spec) and 

precision (P) and F1-score. For each fold, these metrics are 

calculated according to equations (2), (3), (4), (5) and (6), 

respectively [10].  Accuracy can be a misleading metric for 

imbalanced data sets. To make up for this deficiency, we also 

calculated specificity and sensitivity. Precision talks about 

how precise/accurate the model is out of those predicted 

positive, how many of them are actual positive. F1 Score 

might be a better measure to use if we need to seek a balance 

between Precision and Recall and there is an uneven class 

distribution (large number of Actual Negatives). 
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F1-score = 2 ∗
(𝑃∗𝑆𝑒𝑛𝑠)

(𝑃+𝑆𝑒𝑛𝑠)
                            (6) 

where 𝑇𝑝
𝑐 denotes the true positives: all c instances that are 

classified as c; 𝑇𝑛
𝑐 denotes true negatives: all non-c instances 

that are not classified as c; 𝐹𝑝
𝑐  denotes the false positives: all 

non-c instances that are classified as c; 𝐹𝑛
𝑐  denotes false 

negatives: all c instances that are not classified as c. 

 

 
Figure 4. Precision during the training section of a 2D CNN. blue curve: training precision. black-curve – validation precision. 
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III. RESULTS AND DISCUSSIONS 

Table I shows the performance of all deep neural networks 

evaluated in this work: 1D CNN, 2D CNN, LSTM and GRU, 

with 5-fold-cross validation. As shown, the best performance 

was obtained with the 2D CNN network, with a precision of 

92.31%. Figure 5 shows a confusion table obtained with a 2D 

CNN.  

Table II shows a comparison of the performance of the 2D 

CNN with other results previously published in the literature 

for classification of 17 classes of MIT-BIH database. As 

shown, the results obtained in this paper are in the state-of-

the-art.  

As mentioned, some previous arrhythmias detection 

works use gray-level images [11] [14] [12].  In these works, 

the authors used, as input signal, a gray-level image of the 

ECG tracing (like an ECG signal photo) with different sizes:  

256 x 256, 192 x 128, and 64 x 64 pixels, respectively. In this 

work, we also use a gray-level image. However, the intensity 

values of the pixels correspond to the values of the normalized 

heartbeat ECG signal. Therefore, all pixels of the gray-level 

image carry relevant information about ECG signal.  

Also considering that, this image is significantly smaller 

than those used in aforementioned papers, the proposed 

method is more suitable to be implemented on platforms with 

reduced memory capacity, such as mobile devices. 

Although the most recent studies for arrhythmias 

detection use hybrid architectures, CNN-LSTM, in this work 

we managed to obtain cutting-edge performance, using only 

a CNN architecture.  

We credit this better performance of the 2D-CNN to the 

fact that new neighborhood relationships are explored through 

a proposed gray-level image that all pixels carry information 

about a heartbeat of the ECG signal. 

In future works, we intend to 1) explore data 

augmentation, creating new images through small gray level 

changes in the pixels of the gray-level image; 2) evaluate 

other arrythmia classifications in 2, 5 and 8 classes; 3) 

implement the proposed method in mobile devices. 

TABLE I   RESULTS OF THE 4 ARCHITECTURES EVALUATED IN THIS STUDY 

(MEAN±SD) 

1D CNN 94.29±2.14 47.64±18.05 97.00±1.92 52.27±27.28 49.85±22.37

2D CNN 99.13± 0.65 93.07±6.10 99.52±0.42 92.31±6.87 92.68±5.64

LSTM 96.21±1.65 64.65±15.15 98.09±1.48 68.13±24.72 66.34±18.53

GRU 95.71±1.82 62.99±16.12 97.70±1.55 63.51±24.19 63.24±18.35

F1-ScoreArchitecture Accuracy Sensitivity Specificity Precision

 

  

  
 

 
Figure 5. Confusion Matrix obtained with 2D CNN showing precision values. 
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TABLE II  COMPARISON OF THE 2D CNN WITH OTHER RESULTS PREVIOUSLY 

PUBLISHED IN LITERATURE 

Yildirim [10] 2018 91.33

Plawiak  [6] 2018 91.40

Proposed Method (2D CNN) 2021 92.31

Work Year Precision

 

IV. CONCLUSION 

In this paper we proposed a new methodology for 
arrythmias detection in ECG signals, using 2D CNNs. The 
main characteristic of the proposed method was the use of 
15x15 pixels gray-level images of the ECG signal, with the 
pixel’s intensities corresponding to the ECG values. The 
obtained results, with a precision of 92.31% is in the state-of-
the-art. In future works we intend to explore data augmentation 
to improve the results. We also intend to implement the 
proposed method in mobile devices.     
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