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Abstract- COVID-19, due to its accelerated spread has brought 

in the need to use assistive tools for faster diagnosis in addition 

to typical lab swab testing. Chest X-Rays for COVID cases 

tend to show changes in the lungs such as ground glass 

opacities and peripheral consolidations which can be detected 

by deep neural networks. However, traditional convolutional 

networks use point estimate for predictions, lacking in capture 

of uncertainty, which makes them less reliable for adoption. 

There have been several works so far in predicting COVID 

positive cases with chest X-Rays. However, not much has been 

explored on quantifying the uncertainty of these predictions, 

interpreting uncertainty, and decomposing this to model or 

data uncertainty. To address these needs, we develop a 

visualization framework to address interpretability of 

uncertainty and its components, with uncertainty in 

predictions computed with a Bayesian Convolutional Neural 

Network. This framework aims to understand the contribution 

of individual features in the Chest-X-Ray images to predictive 

uncertainty. Providing this as an assistive tool can help the 

radiologist understand why the model came up with a 

prediction and whether the regions of interest captured by the 

model for the specific prediction are of significance in 

diagnosis. We demonstrate the usefulness of the tool in chest x-

ray interpretation through several test cases from a 

benchmark dataset. 

 

1. INTRODUCTION 

Chest X-Ray images and CT scans for COVID cases contain 

useful information for early diagnosis such as ground glass 

opacities, infiltrate air space opacities, peripheral 

consolidations in majority of the cases, and pleural effusion 

to be a very rare worst-case scenario. Since there is a huge 

variation at the same time similar features that can attribute 

to a type of pneumonia or any other respiratory disease, it is 

important to provide radiologists means to visualize why the 

model made a decision in addition to just being a classifier 

detecting COVID. This could help medical professionals 

verify model correctness and apply necessary measures to 

the dataset or the model for improving performance.  

There have been several research works using point estimate 

neural networks for classifying COVID cases. These works 

range from binary classification [1][2][3][6], 3-class 

classification-COVID/Normal/Viral[1][2][3][4][5] and 4 

class classification-COVID/Normal/Viral/Bacterial[2][3][4]. 

These works used a range of existing state of the art models 

such as CheXNet, DenseNet201[3] and also explored use of 

new architecture such as DarkCOVIDNet[1], ConvXNet[2], 

COVIDNet [5]. A variant to these were use of Monte Carlo 

drop weights-based network for computing uncertainty in 

COVID predictions [7].  

Interpretability in these works were covered for point 

estimate networks using GradCAM, GSInquire, Layerwise 

relevance propagation methods. 

There have been limited work on uncertainty estimation for 

a prediction along with its decomposition and its 

visualization for interpretability with respect to individual 

pixels in a Chest X-Ray image, which can be crucial for 

wider adoption in healthcare. Hence, we develop a 

visualization framework that captures change in uncertainty 

with respect to input pixels for a prediction, where the 

uncertainty was estimated using Bayesian Convolutional 

Neural Network. We further indicate whether the 

uncertainty was due to the model (epistemic) or lack of 

features on the training data not sufficient for classification 

(aleatoric). Such pixel-level annotation for uncertainty can 

help healthcare practitioners in understanding the model 

predictions better, resulting in better trust in the computer-

aided diagnosis process.  

 

2. PROPOSED FRAMEWORK 

There are 3 major components used in our approach: 

1. Bayesian Neural Network Architecture [10] 

2. Computing Predictive Difference [8] 

3. Computing Uncertainty and its components [8][9] 

 

We implement a Bayesian Neural Network [10] that learns 

the posterior weight distribution p(w|D) given the training 

data through Dropout Variational Inference, where w 

aggregates weights over all the L layers in a network and D 

is the training dataset with N inputs including samples and 

labels. Similar to [8], we use a more generic alpha 

divergence than KL divergence to reduce the distance/ 

approximation gap between the true posterior weight 

distribution and the dropout approximate variational 

distribution. Since KL divergence underestimates 

uncertainty due to fitting to local mode of the posterior, we 

use Alpha divergence that provides better uncertainty 

estimates relaxing this constraint of KL divergence. In order 

to determine which input pixels affect the uncertainty of the 

Bayesian Model, it is important to compute the change in 

predictive uncertainty, epistemic uncertainty and aleatoric 

uncertainty related to a pixel. Aleatoric uncertainty helps 

identify whether there has been sufficient training data the 

model has been exposed to, so that it has enough features for 

a single weight setting to make a classification decision. 
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Epistemic uncertainty demonstrates if there are significant 

distribution shift between the training and testing data, 

which can help the radiologist know which type of training 

data is missing for training and take appropriate measures to 

source them. 

 We use a framework discussed in [8] which is based on the 

predictive difference analysis [9] to visualize the 

interpretability through saliency maps visualization. The 

approach estimates the relevance of each feature in the test 

input to the prediction by comparing the model output when 

the feature is known, to the model output when it is not 

known. The extension of this is applied to estimate the 

relevance of each feature in test input with respect to the 

prediction in terms of change in uncertainty. In order to find 

the relevance of features, a kxk patch of pixels are perturbed 

to find the change in prediction and uncertainty which 

unlike gradient based methods yields smoother 

visualizations. 

 

3. EXPERIMENTAL SETUP 

Since there is no single benchmark dataset available for 

COVID Chest X-Ray images, the data was compiled from 

various open and public repository sources [11][12][13] and 

segregated to 4 classes for a multiclass classification : 

COVID-19, Viral Pneumonia, Bacterial Pneumonia and 

Normal, with a total of  319, 1493, 2772, and 1582 images 

for each class respectively comprising a mix Anterior to 

Posterior(AP) and Posterior to Anterior(PA) X-Ray images. 

Train-test split of 80-20 was done for each class separately 

due to imbalanced nature of dataset and limited availability 

of COVID Dataset.  

All images were resized to 224x224x3 since each image 

source had different image sizes. The image pixel values 

were rescaled to [0,1]. 

      In terms of parameters, 10 stochastic forward passes 

were performed during training. We used Adam optimizer 

with a learning rate of 1e-4. Also we choose alpha of 0.5 

over 0 or 1 since it proved to yield better predictions and 

uncertainty estimates [8]. A stopping criterion based on 

validation loss was set to perform early stopping with 

patience of 10 epochs, with a total use of 30 epochs. 100 

stochastic forward passes are performed during the test 

phase. An 8X8 feature patch size to be marginalized was 

chosen with a sliding window with a step size of 10 in both 

directions to generate smoother visualization. Application of 

oversampling/data augmentation during initial trials did not 

yield significant improvement in accuracy, hence it was not 

considered. 

 

The network resulted in an 80% test accuracy. It is 

important to note that although the accuracy of similar 

works [2][3][4] with much more complex networks are 

around 87%-90%, accuracy was not the focus of our work. 

The Bayesian network takes considerable amount of 

computational resources to train. A more complex network 

will require more resources beyond the capability of the 

research team. We achieved an 80% test accuracy, which we 

believe is reasonable enough to generate the pixel-level 

saliency maps, which is the focus of this work.  

 

4. RESULTS AND DISCUSSION 

 

         Figure 1: Softmax vs Uncertainty for predicted class 

Figure 1 shows the relationship between the predictive 

softmax (max softmax obtained by averaging the softmax 

values when the input is passed through each weight 

sample) and the predictive uncertainty, epistemic 

uncertainty and aleatoric uncertainty for the test samples. It 

is observed that the predictive uncertainty is higher for 

lower softmax values and lower for higher softmax values. 

Decomposing predictive uncertainty into its components 

(aleatoric and epistemic uncertainty) shows it is mostly 

influenced by aleatoric uncertainty. This means that the 

model predictions did not have enough information along 

the pixels to predict the output value for an input with a 

fixed weight setting.  Also, the softmax for majority of the 

samples are observed to be above 50%. Epistemic 

uncertainty for most cases has less influence on the 

predictions than aleatoric uncertainty. Whereas aleatoric 

uncertainty is spread more around lower softmax 

predictions. 

Although this is an overall analysis, it is important to 

analyze each case to understand which pixels when 

perturbed before passing to the model increased the 

uncertainty or certainty in the model predictions.  

 

4.1. Visualizations for predictive uncertainty and 

predictive difference: 

To demonstrate the usefulness of the visualization tool, we 

provide explanations through two test image examples, one 

was predicted correctly, the other one incorrectly. The 

visualizations generated below for local explanations 

consists of images that indicate regions of increased 

uncertainty in red and decreased uncertainty in blue for 

predictive (indicated in the image as Diff predictive), 

epistemic (indicated in the image as  Diff epistemic), and 

aleatoric uncertainties (indicated in the image as Diff 

aleatoric). The scale reflects the change in uncertainty 

values.  In addition to the uncertainty, the predictive 

difference (indicated in the image as Diff pred) of the 

predicted class is also generated to understand the 
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relationship between predictive difference and predictive 

uncertainty for each case. Increase in predictive 

difference/evidence of pixels towards a class is shown in red 

and decrease in predictive difference/ evidence of pixels 

against a class is shown in blue. The image content is 

distributed as Original Image, Change in Uncertainty, and 

Overlay in order. In the Figures 2 and 3, the right lung is on 

the left side of the image and left lung on the right side of 

the image. 

 

4.1.1. Example of Correct prediction  

Figure 2 shows visualizations generated for a correct 

COVID prediction. We observe opacities in a continuous 

fashion on the edges of the right lung. Based on the scale 

and the absolute value, it could be seen that aleatoric 

uncertainty is higher than epistemic uncertainty. The model 

uses mostly the right lung and a smaller area in the left lung 

to make its predictions for a given class. The same pixels 

that have contributed to a reduction in aleatoric uncertainty 

have contributed to reduction in epistemic uncertainty which 

are along the edges of the right lung and in the middle lobe 

of the left lung. This shows that the same pixels that provide 

information for the classification also make the test input 

similar to the training input distribution. We also notice that 

in the middle lobe of the right lung, the same pixels 

contribute to increase in   epistemic and aleatoric 

uncertainty, showing that the model did not have enough 

features around the area to make a decision. For COVID 

case this input is different from the training input with the 

current combination of features.  

When comparing with predictive difference, it can be seen 

that the pixels that provide evidence for a class reduce 

predictive uncertainty and pixels that provide evidence 

against the class increase predictive uncertainty. In this case, 

the model has correctly picked the regions of difference in 

densities in the image relevant to ground glass opacities in 

the right lung. However, the left lung opacities have not 

been taken into consideration, which requires further 

pondering into analyzing why the model missed those 

features and help in model correction and better training 

samples collection. 

 

4.1.2. Example of Incorrect Prediction:  

Figure 3 shows visualizations for an incorrect COVID 

prediction. Based on the scale and the absolute value, it can 

be seen that aleatoric uncertainty is higher than epistemic 

uncertainty. The model uses mostly the right lung and a 

smaller area in the left lung to make its predictions for a 

given class. Even though the prediction is erroneous, we 

observe a high softmax value. This particular false positive 

occurs in some of the sample images because in the training 

data, some COVID-labeled images were from day 0-2 of 

COVID. However, in days 0-2 typically the patients can test 

positive through a swab test, but the anomalies will not 

show up in a lung X-ray. Hence the model has learnt 

erroneous features from these noisy training data, where 

apparently normal lung images were labeled as COVID. 

Based on such training, for this particular test image, the 

model has mistaken the change in density due to bone 

reflections in the right lung middle lobe as opacity and the 

bronchial vessels as infiltration. Also, the model has picked 

on the ribs and the background. 

 

Figure 2: Change in epistemic, aleatoric, predictive 

uncertainty and predictive difference. Ground Truth: 

COVID, Prediction: COVID, Aleatoric Uncertainty: 0.5657 

The pixels adhering to these in the right lung are pixels 

which are in common reducing epistemic and aleatoric 

uncertainty, meaning that the same pixels that provide 

information for the classification also make the test input 

similar to the training input distribution. We also see that the 

same pixels contribute for increase in epistemic and 

aleatoric uncertainty, indicating the testing input has been 

different with respect to features than the training data that 

the model is not able to use them for classification. When 

comparing with predictive difference, it shows that the 

pixels that provide evidence for a class reduce predictive 

uncertainty and pixels that provide evidence against the 

class increase predictive uncertainty. 

 

5.CONCLUSION 

A visualization framework that demonstrates interpretability 

based on contribution of pixels in a Chest X-Ray image to 

uncertainty for COVID 19 diagnosis with local explanations 

(providing explanation for specific test instance) has been 

presented, which can help making the computer-aided 

diagnosis process more trustworthy. The uncertainty 

estimates are obtained using a Bayesian Convolutional 

Neural Network and alpha divergence and decomposed to 

epistemic and aleatoric uncertainty. Visualizing both types 

of uncertainty helps in determining whether the issue is with 
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the amount of training data (aleatoric uncertainty) or a 

significant shift between the training and test data 

distribution (epistemic uncertainty).  

 
  

Figure 3: Change in epistemic,aleatoric ,predictive 

uncertainty and predictive difference. Ground Truth: 

Normal, Prediction: COVID, Aleatoric Uncertainty: 0.1284, 

Epistemic Uncertainty: 0.0015, Softmax: 98.50% 

 

One of the most prominent limitations in the above work is 

the lack of a benchmark dataset with enough diversity of 

COVID cases. Since it is evolving with increasing number 

of cases in different parts of the world, diversity in dataset 

will likely be available in future. The resulting saliency 

maps depend on the quality of uncertainty estimates from 

the Bayesian Convolutional Neural Network. This in turn 

heavily depends on the alpha divergence objective and the 

approximation gap between the variational distribution 

chosen to approximate the posterior weight distribution. It is 

important to make reasonable choices with the distribution 

and the objective function. An interesting extension would 

be to explore different variational distributions or 

divergence objectives and their influence on the uncertainty 

estimates. 
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