
Control of a lower limb exoskeleton using Learning from
Demonstration and an iterative Linear Quadratic Regulator Controller:

A simulation study

Nathaniel Goldfarb1, Haoying Zhou1, Charles Bales1, and Gregory S. Fischer1

Abstract—
Lower limb exoskeletons have complex dynamics that mimic

human motion. They need to be able to replicate lower limb
motion such as walking. The trajectory of the exoskeleton
joints and the control signal generated are essential to the
system’s operation. Current learning from demonstration meth-
ods has only been combined with linear quadratic regulators;
this limits the applicability of processes since most robotic
systems have non-linear dynamics. The Asynchronous Multi-
Body Framework simulates the dynamics and allows for real-
time control. Eleven gait cycle demonstrations were recorded
from volunteers using motion capture and encoded using Task
Parameterized Gaussian mixture models. An iterative linear
quadratic regulator is used to find an optimal control signal to
drive the exoskeleton joints through the desired trajectories. A
PD controller is added as a feed-forward control component
for unmodeled dynamics and optimized using the Bayesian
Information Criterion. We show how the trajectory is learned,
and the control signal is optimized by reducing the required
bins for learning. The framework presented produces optimal
control signals to allow the exoskeleton’s legs to follow human
motion demonstrations.

Index Terms— TPGMM, iLQR, learning from demonstra-
tion, optimal control

I. INTRODUCTION

Lower limb exoskeletons have complex non-linear dynam-
ics and are required to follow human-like trajectories. There-
fore human-like motion is difficult to reproduce using hand-
coded trajectories. It is advantageous to use demonstrations
of the desired movement. Motion capture and Learning from
Demonstration (LfD) allow for human motion to be used
to generate trajectories to be encoded for robotics systems
to follow [1], this enables gait cycles to be recorded and
reproduced on lower limb exoskeleton systems. A controller
is still required to generate control commands to follow these
desired trajectories. Classical control systems are typically
designed by tuning parameters to produce an acceptable
response, often without attempting to minimize torques or
other parameters. On the other hand, an optimal controller
provides a mathematical method to minimize torques and
deviations.

This paper presents a method that combines LfD and
an optimal controller to control a lower limb exoskele-
ton’s legs. A motion capture system collected gait cycle

Manuscript received July 21, 2021
This work does not have external financial support
1 Robotics Engineering Department at Worcester Polytechnic Insti-

tute, 50 Prescott St, Worcester, MA 01609 nagoldfarb@wpi.edu,
hzhou6@wpi.edu, gfischer@wpi.edu

demonstrations. These demonstrations are parsed, encoded,
and reproduced using Task Parameterized Gaussian mixture
models (TPGMM). An iterative Linear Quadratic Regulator
(iLQR) is used to calculate optimal control signals using
a linear cost function to minimize the torques and reduce
the path deviation error. A PD controller is added to aid
with unmodeled dynamics and disturbance rejection. The
controller is tested on a lower limb exoskeleton simulation,
LARRE (Legged Articulated Robotic Rehab Exoskeleton).
The Asynchronous Multi-Body Framework (AMBF) is used
to simulate the dynamics and enable low computational
overhead [2].

II. BACKGROUND

A. Learning Trajectories from Human Motion

Motion capture (mocap) is one tool that can record human
kinematics and kinetics. Mocap allows for the sub-millimeter
measurement of markers on a body, allowing for complex
motion trajectories to be captured. In [3], Chalodhorn et. al
mapped mocap markers from a human to a robot to train
the system to walk. They used the location of the markers
to the motion of the body using a model-free approach.
The mocap marker data was mapped from the human to
the robot to calculate motor commands to move the robot.
The model was optimized to follow the trajectories while
satisfying the kinematic constraints of the system. In [4] they
mapped human motion to a bipedal robot by passing the
parameters through a classical zero moment point controller.
These approaches allow for mapping either the joint angles
of the marker positions to train a robot.

Learning from Demonstration (LfD) or Programming from
Demonstration (PfD) is a powerful method to use human
demonstrations to control a robot’s movement. It has a wide
range of applications in the field of robots. It can be utilized
on adaptive bimanual tracking behaviors learned from a
single demonstration. LfD has been used to reproduce hand-
clapping [5], chess-playing, and holding objects such as
sugar cubes and cups [6] based on demonstration and full-
body movements [7].

Task Parameterized Gaussian mixed models (TPGMM)
allows for the encoding of multiple demonstrations into
clusters. TPGMM probabilistically encodes the changing
relevance of candidate frames throughout the task [8] simi-
lar to Gaussian mixed models. It adapts regression trajec-
tories based on parameters: positions and orientations of

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 4687

the frames. Gaussian Mixture Regression (GMR) then re-
gresses over the TPGMM outputs to retrieve output features.
TPGMM/GMR provides a robust framework for learning
and encoding human motion for reproduction on robotics
systems. Dynamic Movement Primitives(DMP) allows for
the reproduction of tasks [9] [10] . The classical form of
DMPs relies on a single demonstration for encoding and
reproduction. However, this lacks the ability to build model
demonstrations, which allows the reproduction model to be
more versatile. By combining DMPs with TPGMM/GMR,
multiple demonstrations can train and reproduce a general-
ized trajectory.

B. Optimal Controllers for Robotic Systems

The Linear Quadratic Regulator (LQR) is a well-known
method that provides optimally controlled feedback gains to
enable the closed-loop, and high-performance control [11].
The limitation of LQR is that it can only account for linear
systems and linear cost functions. In [6], Calinon et. al used
TPGMM/GMR with an LQR controller to develop a minimal
intervention controller. This controller was used to control
a Kuka robotic arm [12] through a series of movements.
While this method worked well, the controller does not
directly model the dynamics of the robot. It instead models
a mass-spring-dampener system and controls this simplified
system. This method leads the inspiration to use a non-linear
controller instead of the linear one used previously.

The Iterative Linear Quadratic Regulator (iLQR) is a non-
linear version of the LQR controller. The iLQR is an iterative
process that uses a Taylor approximation of the dynamics
and cost function to find a local linear model. The dynamics
and cost function are linearized in the forward pass of the
system using a shooting method, while like the typical LQR,
the backward pass calculated the optimal gain and cost
[13]. Differential Dynamic Programming(DDP) is a similar
method to iLQR; in classical DDP, the second-order terms
are costly operations [14] [15]. This modification to LQR
allows the control of non-linear system control problems;
this is useful because it expands the systems the LQR can be
applied to, including biological movement system [16] and
online trajectory optimization [17]. iLQR compared to ODE
solvers, gradient descent methods, and differential dynamic
programming converges substantially faster and finds slightly
better solutions [16].

iLQR controllers have been implemented on a wide variety
of systems. In [18] they used a modified form of iLQR called
constrained iLQR to control the motion of a car. The car was
subjected to several state and control constraints. iLQR also
allows for the control of humanoid robots. Tassa et. al used
iLQR to control an HRP-2 robot’s motion by controlling
the joint angles [14]. These methods show the applicability
of the iLQR controllers for biological control. They provide
optimal control commands for biological systems.

C. Asynchronous Multi-Body Framework

AMBF is a multi-body simulation framework based on
a front-end description format. This high-performance dy-

namic simulation supports complex open-loop and closed-
loop systems focusing on medical and industrial robotic
systems. The simulated object definitions are written in
the AMBF Description File (ADF) file using the YAML
1 format and allows the definition of various attributes of
the robot’s components [2]. The components include the
bodies, joints, sensors, and actuators. Each component has
attributes that could include the kinematic, inertial, collision,
controller, communication, material, hierarchical attributes,
etc. Some of these attributes are communicated over the ROS
middleware that is then accessible via the Python Client. The
AMBF environment reduces the computation overhead and
allows the modeling of the complex robotic system and for
controllers to be tested and implemented.

III. METHODS

A. Overview

The proposed approach is split into several phases; demon-
stration, encoding, and optimization. During the demonstra-
tion phase, gait data is collected, and the gait cycles are
parsed to extract the joint angles. The demonstrations are
encoded using TPGMM/GMR. LARRE and the wearer are
assumed to be non-linear and modeled by Equation 1 where
M is the mass-inertia matrix, C is the Coriolis terms, G
is the gravity terms. The control signal is calculated using
an iLQR controller. This control signal is used to control
LARRE in AMBF.

τ = M(q)q̈ + C(q, q̇)q̇ +G(q) (1)

B. Collection of Demonstration Data

During the demonstration phase, a trial was conducted to
build a library of gait cycles. Eleven able-bodied subjects
participated in the study (5F, 6M). The Institutional Review
Board of Worcester Polytechnic Institute approved the study,
and each subject gave written consent. The data was anony-
mous, so the subjects could not be identified. All the data
was saved in an ASCII format file.

A Vicon Vantage V5 motion capture system2 was used
with a total of 10 cameras recording at 100Hz. The lower-
body plug-in gait model was used to record the lower body
dynamics of the subject. Additional rigid body plates were
placed on the thighs, shanks, and back of the participants for
redundancy and to mitigate marker occlusion. The marker
placement was calibrated to each subject prior to the study.
The subjects were instructed to walk approximately three
meters in a straight line at their own pace; this was repeated
three times to ensure that a good sample trial with no marker
occlusion was collected. The gait cycles of the subjects
were parsed and compared. Figure 1 shows the joint angles
extracted from a gait cycle of the subjects using a custom
package3. The raw data is also provided open source for
community4.

1https://yaml.org
2https://www.vicon.com/
3https://github.com/WPI-AIM/AIM GaitAnalysisToolkit
4https://github.com/WPI-AIM/AIM GaitData

4688

Fig. 1: Gait Cycles extracted from the subjects. Each line is
a separate gait cycle from a different subject

C. Learning the Gait Motion

Equation 2 shows the basic formulation of the DMP,
which defines a stable underlining model and adds a forcing
function to drive the model. In this equation, βy and αy are
the system gains, y is the system state, and g is the goal.
The canonical dynamical system denoted x decreases from
1 → 0. The force function f is a non-linear function that
pulls the canonical system along the trajectories [19].

ÿ = αy(βy(g − x)− ẏ) + f

ẋ = −αxx
(2)

During the encoding phase, the demonstrations are en-
coded using the TPGMM algorithm. The model is defined
by {πi{µj

i ,Σ
j}Pj=1}, where πi are the mixing coefficient,

µ, is the mean, and Σ is the covariance matrix of the
Gaussian. The expectation-maximization (EM) algorithm is
an iterative algorithm used to maximize the likelihood. K-
means initializes the TPGMM algorithm, which is used to
guess the values µ0−K , Σ0−K , where K is the number of
Gaussian to place on the data set. The Bayesian Information
Criterion (BIC) calculates the number of bins K [20]. The
number of bins is critical to set because if too few bins are
used, the model will be poorly fit; if too many are used,
it will over-fit the demonstrations. Equation 3 calculates the
BIC score; it is a trade-off between optimizing the likelihood
and minimizing the number of states to encode. L is the
log-likelihood, N is the number of mixture models, K is the
number of components, and D is the dimension of the data
points. [20] [21].

SBIC = −L+
log(N)(K(D + 1)(D + 2)− 2)

4
(3)

The EM algorithm is an iterative process that maximizes
the likelihood value γ. The E-step (Equation 4) calculates
the new likelihood with the current parameters, while the
M-step (Equation 5) updates the parameters given the new
likelihood.

E(xpected):

γn,i =
πi

∏P
j=1N (Xj

n|µ
j
i ,Σ

j
i)∑K

k=1 πk
∏P

j=1N (Xj
n|µj

i ,Σ
j
i)

(4)

M(aximization):

πi =

∑N
t γt,i
N

µj
i =

∑N
t γt,iX

j
t∑N

t γt,i

Σj
i =

∑N
t γt,i(X

j
t − µ

j
i)(X

j
t − µ

j
i)

T∑N
t γt,i

(5)

Each of the demonstrations d ∈ {1...D} is a vector
of time-sequenced data points creating a data structure of
size

∑D
d=1 Td. The length of each of the Ti vectors will

be different for each demonstration; this results from the
subjects’ stride speeds. The demonstrations are aligned us-
ing the dynamic time warping algorithm; this ensures that
the features demonstrations’ features are aligned. The task
parameters are represented as a coordinate system P defined
at each time step n defined by {bn,j , Anj}Pj=1. The b vector is
a set of basis vectors from the origin with the transformation
matrix A. This formulation allows for trajectories to be
transformed into any frame using Equation 6. ξ is the vector
of the data points.

Xj
t = A−1t,j (ξt − bt,j) (6)

GMR models the regression function from the joint prob-
abilities calculated by TPGMM. GMR regress over the basis
function, creating the forcing function (f) needed for the
seen in the DMP formulation. Equation 7 calculates the
likelihood, and Equation 8 calculates the covariance and
mean, where ξ is a multidimensional array, µo

i , and Σo
t are

vectors of the output mean, and covariance, µI
i , and ΣI

t are
vectors of the input mean and covariance.

P (ξOt |ξIt) ∼
K∑
i

hi(ξ
I
t)N (µ̂o

i , Σ̂
o
t) (7)

where,

µ̂o
i = µo

i + ΣOI
i ΣI−1

i (ξIt − µI
i)

Σ̂O
i = ΣO

i − ΣOI
i ΣI−1

i (ξIt − µI
i)

hi =
πiN (ξIt |µ

j
i ,Σ

j
i)∑K

k πkN (ξIt |µ
j
k,Σ

j
k)

(8)

D. Optimization of the Joint Control Commands

During the optimization phase, the control inputs calcu-
lated drive the system along the trajectory. There are two
steps in the iLQR algorithm; a forward pass and a backward
pass. In this forward pass, the simulated forward LARRE and
wearer system is simulated forward along the trajectory using
a dynamic model. LARRE’s dynamics are defined using the
Rigid Body Dynamics Library (RBDL) [22]. This library
uses a Newton-Euler approach and Featherstone dynamics
to solve the forward, and inverse dynamics of a system [23].

Runge Kutta 4 (RK4) integrates the system forward to
obtain the next state of the system [24]. RK4 is a numerical
integration method that perturbs the system around a point

4689

Fig. 2: Diagram of how the iLQR algorithm works with
the forward pass and backward pass. The loop exists when
the difference in current cost and previous cost is below a
tolerance.

and uses an average response average value. In the backward
pass, the system is solved backward to update the control
parameters. A modified version of the open-source library5

was used and implemented. Figure 2 shows a diagram of how
the iLQR algorithm works. The algorithm continues back and
forth until the cost J converges, indicating that the control
signal u can drive the system along the desired trajectory.

Equation 9 defines the generalized non-linear system dy-
namics. The cost function is the sum of the running cost and
the terminal cost shown in Equation 10. This paper uses a
linear cost function to take advantage of the TPGMM/GMR
process shown in Equation 11, where x̃i = xi − xdi . This
paper’s cost function is designed to follow a reference
trajectory xd using GMR. The Qi varies along the path and
are calculated by the TPGMM algorithm (Qi = Σ−1i). The
Q matrix is the weight for transiting, and the R matrix is
the weight of the control.

xi+1 = f(xi, ui) (9)

J(x, U) = `f (xN) +

N−1∑
i=0

`(xi, ui) (10)

where, `(xi, ui) = x̃Ti Qix̃i + uTi Rui

`f (xN) = xTNQNxN
(11)

The value function is found using Equation 12 which is
minimized over the entire control sequence. Using calculus
of variations Equation 13 is found which is decomposed into
Equation 14, where A = ∂f/∂x and B = ∂f/∂u. The
particles derivatives are calculated in the forward pass at each
time step using a finite difference method [15].

Q(x, u) = `(x, u) + V (f(x, u, i+ 1)

V (x, i) = min
u
Q(x, u)

(12)

5https://github.com/anassinator/ilqr

δQ =
1

2

 1
δx
δu

T 0 QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu

 1
δx
δu

 (13)

Qx = `x +ATV ′x

Qu = `u +BTV ′x

Qxx = `xx +ATV ′xxA

Quu = `uu +BTV ′xxB

Qux = `ux +BTV ′xxA

(14)

The optimization finds the total cost and the optimal con-
trol gains for the system. The control sequence is found using
Equation 15, where K = −Q−1uuQux and k = −Q−1uuQux.
The α term is a linear search term to ensure convergence of
the system, and ûi is the nominal control input. Here k is a
feed-forward term, and K is the gain for the feedback term.

ui = Ki(xi − x̂i) + αki + ûi (15)

A PD controller was added into the loop to allow for error
tracking in real-time; the PD controller handles errors in un-
modeled dynamics suck as joint friction and damping [14].
The iLQR torque acted as a feed-forward term driving the
system, and the PD controller handled path deviation errors.
Figure 3 show the control diagram.

Fig. 3: Control diagram of the exoskeleton. The trajectory
is found using TPGMM. The iLQR provides a feedforward
control input. The PD controller removes un-modeled dy-
namics of the system

E. Training R matrix

As discussed above, the TPGMM process finds optimal
values for the Qi along the trajectory, which is the weighting
of the system’s state. However, this does not provide insight
into the form of the R matrix, which is the weighting of
the control input into the system. These values are critical
because they determine the amount of effort applied at every
point along the trajectory. The shape of the R matrix for this
application 6 × 6 diagonal matrix. The first three diagonal
elements of the R matrix are correlated to the control input
of the left leg (hip, knee, ankle). The other three diagonal
elements are related to the control input of the right leg (hip,
knee, ankle). Since the mechanical structures of both legs
are identical, therefore it can assume that the exoskeleton
has mechanical symmetry of the joints for the left and right
legs i.e. hipR == hipL. This assumption is made because
each leg would have similar masses and controlled with
identical motors. In addition, the minor differences can be
supplemented by the Q matrix during the iLQR training.

4690

To find the R matrix’s values; the values were iteratively
changed to find a matrix that minimizes cost J defined in
Equation 16, where N is the number of points for output, xi
are the points on the desired trajectory, and x̂i are the points
on the actual trajectory. [25].

J =

√∑N
i=1(xi − x̂i)2

N
(16)

The high dimensionality and non-linear dynamics make
it challenging to weight values of the matrix [26]. The
complexity of the motor behaviors also increases the dif-
ficulty of finding the R matrix. Therefore, a brute-force
method was implemented to go through values in different
magnitudes and select the optimal result. The control signal
was tested by forward integrating using RK4. Figure 4 show
the optimal trajectory, which uses the optimal R values, and
one poor case, which uses different R values that cannot
make the generated trajectory fit the desired trajectory well.
This trajectory did not follow the desired motion and was
deemed unacceptable. Changing the values of the R matrix
has a significant effect on the replication of the trajectory.
The R matrix must be tuned in order to replicate the desired
trajectory.

Fig. 4: Joint Angles for the trajectories altered by changing
values of the R matrix. Showing the importance of the R
matrix in the iLQR algorithm. The blue line is the desired
motion, the red line is well fit trajectory found, and the green
line is a poorly fit trajectory.

F. Simulation of the system

The LARRE model and all its components were designed
in CAD. The exoskeleton’s model consists of various sub-
assemblies simplified into the hip, thigh, shank, and foot
components for both the left and right sides, respectively,
and exported as STLs. The inertia and mass of each of
the segments were also calculated using CAD. A scaled
human model inserted into the exoskeleton allowed for joint
alignment and sizing of the limb lengths. We assumed that
the human had a mass of 80Kg [27]; this is roughly the mass
for an average North American male. The human joints’ mass
and inertia were calculated using human anatomical data

[28]. The exported STLs were brought into Blender6, and
the ambf addon7 were used to create the joints and assign
the dynamics properties to the bodies. The human model
and exoskeleton were connected. A pair of passive crutches
were added to the system to help support and balance the
body trunk. The ADF file, exported using the ambf addon,
contains all the kinematics and dynamic information to
initialize the model in AMBF. Figure 5 shows LARRE
standing in the AMBF environment.

Fig. 5: AMBF model of exoskeleton

A modular control interface was used to control LARRE
in AMBF. This control interface is beyond the scope of this
paper. The simulation environment was set to run at 1000Hz,
and the controller runs at 500Hz. LARRE’s joint position
and velocity are collected in each iteration of the loop, and a
torque command is sent back, allowing for feedback control.

IV. RESULTS

The number of bins was calculated using the BIC score,
which was calculated several times to ensure converges. Fig-
ure 6 shows the BIC score calculation calculated over several
iterations using 5-30 bins, this range of bins sizes was ex-
perimentally determined. Due to the K-means randomization
step in the EM algorithm, there is some expected variation.
However, it has been shown that the optimal number of bins
converges to be around 15 bins. Using the results of BIC,
the initial TPGMM algorithm used 15 bins. The output of
the TPGMM/GMR process is shown in Figure 7. In this
figure, the blue lines are the underlining demonstrations
used to train the forcing function. The red dots and green
ovals are the mean and covariances of bins, respectively.
The TPGMM algorithm calculates the size and placement of
the bins. Smaller major and minor axis represent groupings
of smaller variation. Figure 8 show the comparison of the
learned model compared to the training demonstrations. The
thin lines are the training demonstrations; the thick line is
the trained model.

The path and Qs are generated by the TPGMM/GMR
process and initialize the iLQR controller algorithm. As the
name implies, the iLQR algorithm is an iterative possesses
that breaks when the cost J converges. Figure 9 shows the
converges of the cost for each iteration. The cost coverage’s
from ∼ 47.5→∼ 27.5 after 6 iterations.

Figure 10 shows a comparison of the exoskeleton joints
to the reference trajectory. The orange line is referencing
trajectory, and the blue line is the path the exoskeleton joints

6https://www.blender.org/
7https://github.com/WPI-AIM/ambf addon

4691

Fig. 6: The bayesian information criterion score that deter-
mines the number of bins. Each line indicates an iterations of
measuring different bins sizes. Multiple trials were conducted
to locate the score and ensure converges.

Fig. 7: Forcing Function Learned for each of the trajectories.
The red dots are the means and the green ovals are the
covariances.

traveled. LARRE’s joints were able to track the desired
motion. Figure 11 shows a comparison of the joint effort
over the trajectory. Both the iLQR feed-forward term and
the total torque (iLQR+PD) are presented. Additionally, the
effort of a pure PD controller is presented for comparison
of effort. This is not the same PD effort used for the total
torque (orange + green 6= blue) The iLQR controller encodes
the known non-linear dynamics of LARRE and the person,
where a pure PD controller does not.

V. DISCUSSION

This approach in developing a controller has taken advan-
tage of several different algorithms. The TPGMM process
offers a comprehensive method to learn complex human
motions from multiple demonstrations, using the GMR al-
gorithm to extract the motion model to replicate the desired
motion. This method bypasses the limitations of DMPs
trained from a single demonstration. The number of bins
used in TPGMM is optimized using the BIC algorithm.
Additionally, the bins’ placement and size are calculated
using the EM steps of the TPGMM algorithm.

The iLQR algorithm allows for the generation of optimal
control sequences for non-linear systems. This modification
of the vanilla LQR controller is vital for robotics systems
since robotic systems are usually modeled as non-linear
systems. The iLQR algorithm is also a natural extension of

Fig. 8: Learned model compared to the demonstrations. The
thin lines are the training demonstrations and the thick line
is the learned model.

Fig. 9: Converges of the iLQR controller cost at each loop
iteration. The cost coverage’s from ∼ 47.5→∼ 27.5 after 6
iterations.

Fig. 10: The trajectory followed using the iLQR controller
compared to the reference trajectory. The blue line is the
actual motion and the orange is the reference trajectory

the TPGMM/GMR algorithm. It provides a comprehensive
method of building a trajectory and the values of the Qk

matrix along the trajectories. Without the TPGMM step,
the Qk matrices would have to be hand-tuned. The control
signal generated by the iLQR controller was able to drive
the joints of LARRE along the desired trajectories. The PD
controller in the loop allowed for feedback to eliminate any
system errors or unmodeled dynamics. This result is best
shown in the first 20% of the gait cycle of the knee and
ankle efforts; the PD controller primarily generates the total
torque; however, the iLQR tracks the total effort over the
remaining control sequence. The large PD controller torque
at the beginning of the trajectory is due to misalignment
in the starting condition. The PD controller can drive the

4692

Fig. 11: Comparison of the PD controller to the iLQR torque
and the total torque. (orange + green 6= blue)

system towards the iLQR control input and maintain the
lower control input. This result indicates that most of the
torque is generated by the iLQR controller over the PD
controller. Compared to the vanilla PD controller, the control
sequence is smooth, with fewer spikes in the control input.

VI. CONCLUSION

This paper introduced a method of integrating an optimal
controller with learning from demonstration to control a
lower limb exoskeleton. This method allows a trajectory to
be learned from multiple demonstrations and uses a non-
linear dynamic model to learn an optimal control signal.
Using a non-linear model allows for the complex dynamics
to be encoded into the control signal. The PD controller
allows feedback to account for non-modeled dynamics. This
work can be used for building a gait controller for lower
limb exoskeletons. Using human demonstrations and inte-
grating them with a controller allows a seamless pipeline
from demonstration to control. Future work includes using
an online model predictive controller to allow for optimal
feedback, allowing for online control, and finding optimal
values for the R matrix. This work will allow every controller
process to be optimized and for the controller to be used on
physical systems.

ACKNOWLEDGEMENT

Nathaniel Goldfarb is supported by the SMART fellow-
ship. The authors don’t have any personal or financial
conflicts of interest.

REFERENCES

[1] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,”
in ICML, vol. 97. Citeseer, 1997, pp. 12–20.

[2] A. Munawar, Y. Wang, R. Gondokaryono, and G. S. Fischer, “A real-
time dynamic simulator and an associated front-end representation
format for simulating complex robots and environments,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Nov 2019, pp. 1875–1882.

[3] R. Chalodhorn, D. B. Grimes, K. Grochow, and R. P. Rao, “Learning
to walk through imitation.”

[4] K. Hu, C. Ott, and D. Lee, “Online human walking imitation in
task and joint space based on quadratic programming,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2014, pp. 3458–3464.

[5] S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell,
“Statistical dynamical systems for skills acquisition in humanoids,” in
2012 12th IEEE-RAS International Conference on Humanoid Robots
(Humanoids 2012). IEEE, 2012, pp. 323–329.

[6] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent service robotics, vol. 9, no. 1, pp. 1–29, 2016.

[7] R. Chalodhorn, D. B. Grimes, K. Grochow, and R. P. Rao, “Learning
to walk through imitation.” in IJCAI, vol. 7, 2007, pp. 2084–2090.

[8] S. Calinon, D. Bruno, and D. G. Caldwell, “A task-parameterized
probabilistic model with minimal intervention control,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2014, pp. 3339–3344.

[9] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in 2009
IEEE International Conference on Robotics and Automation. IEEE,
2009, pp. 763–768.

[10] S. Schaal, J. Peters, J. Nakanishi, and A. J. Ijspeert, “Control, plan-
ning, learning, and imitation with dynamic movement primitives,” in
Workshop on Bilateral Paradigms on Humans and Humanoids: IEEE
International Conference on Intelligent Robots and Systems (IROS
2003), 2003, pp. 1–21.

[11] D. E. Kirk, Optimal control theory: an introduction. Courier
Corporation, 2004.

[12] G. Schreiber, A. Stemmer, and R. Bischoff, “The fast research interface
for the kuka lightweight robot,” in IEEE Workshop on Innovative
Robot Control Architectures for Demanding (Research) Applications
How to Modify and Enhance Commercial Controllers (ICRA 2010).
Citeseer, 2010, pp. 15–21.

[13] B. Jackson, “AL-iLQR Tutorial,” https://bjack205.github.io/papers/
AL iLQR Tutorial.pdf, 2019.

[14] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2014, pp. 1168–1175.

[15] Z. Manchester and S. Kuindersma, “Derivative-free trajectory opti-
mization with unscented dynamic programming,” in 2016 IEEE 55th
Conference on Decision and Control (CDC), 2016, pp. 3642–3647.

[16] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems.”

[17] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 4906–4913.

[18] J. Chen, W. Zhan, and M. Tomizuka, “Constrained iterative lqr
for on-road autonomous driving motion planning,” in 2017 IEEE
20th International Conference on Intelligent Transportation Systems
(ITSC), 2017, pp. 1–7.

[19] S. Schaal, “Dynamic movement primitives-a framework for motor
control in humans and humanoid robotics,” in Adaptive motion of
animals and machines. Springer, 2006, pp. 261–280.

[20] S. Calinon, F. Guenter, and A. Billard, “On learning, representing,
and generalizing a task in a humanoid robot,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 2,
pp. 286–298, 2007.

[21] A. G. Billard, S. Calinon, and F. Guenter, “Discriminative and
adaptive imitation in uni-manual and bi-manual tasks,” Robotics and
Autonomous Systems, vol. 54, no. 5, pp. 370–384, 2006.

[22] M. L. Felis, “Rbdl: an efficient rigid-body dynamics library using
recursive algorithms,” Autonomous Robots, vol. 41, no. 2, pp. 495–
511, 2017.

[23] R. Featherstone and D. Orin, “Robot dynamics: equations and algo-
rithms,” in Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No. 00CH37065), vol. 1. IEEE, 2000, pp. 826–834.

[24] J. A. dit Sandretto, “Runge-kutta theory and constraint programming,”
Reliable Computing, vol. 25, pp. 178–201, 2017.

[25] T. Chai and R. R. Draxler, “Root mean square error (rmse) or
mean absolute error (mae)?–arguments against avoiding rmse in the
literature,” Geoscientific model development, vol. 7, no. 3, pp. 1247–
1250, 2014.

[26] I.-W. Park, K.-B. Lee, and J.-H. Kim, “Multi-objective evolutionary
algorithm-based optimal posture control of humanoid robots,” in 2012
IEEE Congress on Evolutionary Computation. IEEE, 2012, pp. 1–7.

[27] S. C. Walpole, D. Prieto-Merino, P. Edwards, J. Cleland, G. Stevens,
and I. Roberts, “The weight of nations: an estimation of adult human
biomass,” BMC public health, vol. 12, no. 1, pp. 1–6, 2012.

[28] R. Drillis, R. Contini, and M. Bluestein, “Body segment parameters,”
Artificial limbs, vol. 8, no. 1, pp. 44–66, 1964.

4693

