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Abstract— This paper presents a generic method to enhance
performance and incorporate temporal information for
cardiorespiratory-based sleep stage classification with a limited
feature set and limited data. The classification algorithm relies
on random forests and a feature set extracted from long-time
home monitoring for sleep analysis. Employing temporal
feature stacking, the system could be significantly improved in
terms of Cohen’s κ and accuracy. The detection performance
could be improved for three classes of sleep stages (Wake, REM,
Non-REM sleep), four classes (Wake, Non-REM-Light sleep,
Non-REM Deep sleep, REM sleep), and five classes (Wake, N1,
N2, N3/4, REM sleep) from a κ of 0.44 to 0.58, 0.33 to 0.51,
and 0.28 to 0.44 respectively by stacking features before and
after the epoch to be classified. Further analysis was done for
the optimal length and combination method for this stacking
approach. Overall, three methods and a variable duration
between 30 s and 30 min have been analyzed. Overnight
recordings of 36 healthy subjects from the Interdisciplinary
Center for Sleep Medicine at Charité-Universitätsmedizin
Berlin and Leave-One-Out-Cross-Validation on a patient-level
have been used to validate the method.

Clinical relevance— The method can be employed generically
to feature sets for (small scale) datasets to improve classification
performance for classification problems with temporal relations
with random forest classifiers.

I. INTRODUCTION

Sleep plays an essential role in memory consolidation,
muscle and tissue rejuvenation, and productivity during the
day [12]. With the increasing prevalence of certain sleep
disorders, long-term and mobile/remote monitoring of sleep
structure becomes more critical, with sleep stage classifica-
tion being one of the main parts [8]. Due to the limitations
of a measurement environment at home, research in this field
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Fig. 1. Visualization for the feature stacking of k = 1.

recently pivots in the direction of cardiorespiratory-based
sleep stage classification [11]. The restriction to heart rate
and respiratory activity enables easily applicable, mobile, and
long-time measurements that can be carried out at home.
Recent publications have shown that the classification of
sleep stages from these features is feasible and can be
enhanced to great performance [6, 11]. Also, in recent years
there have been various systems with different sensor setups
and measurements [2, 15, 14, 3]. Due to various sensor setups
and the nature of these different measurements systems,
it is often not possible to extract annotated large scale
databases of thousands of patients like in [6, 11] which
enable the use of intense neural networks with millions of
trainable parameters that learn highly specialized features
from millions of different sleep phases. In order to deal
with restricted features and data amounts, researchers often
employ classical machine learning algorithms along with
handcrafted feature sets [2, 3]. Even with classical machine
learning algorithms, there is a vast homogeneity in the
number of handcrafted features. The number of features
varies between 10 (e.g., in [3]) up to over a hundred different
features (e.g., in [9]). The objective of this paper was to
improve classification performance for a restricted feature
set that can be extracted from unobtrusive sensors in a
home environment. The feature set has been taken from
[3]. The goal was to improve classification performance
by constructing a generic method to incorporate temporal
information in sleep stage classification, which has been
proven to improve performance [3, 4]. The method is based
on random forests, a limited feature set from [3] and a private
dataset obtained from the Interdisciplinary Center for Sleep
Medicine at Charité-Universitätsmedizin Berlin containing
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whole night records of polysomnography (PSG) from 36
patients. Incorporating temporal feature information from
previous and following epochs has improved performance
by around 50 % in terms of Cohen’s κ for multiple sets of
sleep stage grouping. Capturing the temporal information es-
sentially is based on concatenating features from surrounding
epochs, which is visualized in Figure 1. The basic reasoning
is that information from previous and following epochs might
enhance the classification by capturing temporal correlations
between consecutive sleep stages.

II. MATERIALS AND METHODS

A. Dataset

The Charité dataset contains 277 h of recording out of
PSG from n=37 who were healthy and were nearly equal
distributed with males and females (Age: 38.5 ± 14.5
years, BMI: 24.4 ± 4.9 kg

m2 ). The initial study was carried
out in Charité-Universitätsmedizin Berlin, Center of Sleep
Medicine. Due to missing recordings, one patient has been
excluded from the dataset, which leaves 276 h of recordings.
After the exclusion of heavy movement phases and not
identifiable sleep stages and the exclusion of initial sleep
stages (for purposes of calculating longer duration features),
but before the exclusion of epochs due to the temporal
stacking, the dataset consists of 33230 epochs with a length
of 30 s that have been annotated with their respective sleep
stage according to the rules of the American Academy of
Sleep Medicine (AASM) by a trained scorer. The class
distribution can be seen in Table I. For this paper, there
are three different groups of sleep stages. For these three
classifications tasks, the stages are grouped as follows:

• Three classes. The sleep stages are divided in Wake,
Non-REM (N1, N2, N3, N4), REM.

• Four classes. The sleep stages are divided in Wake,
Non-REM light Sleep (N1+N2), Non-REM deep sleep
(N3, N4), REM.

• Five classes. The sleep stages are divided in Wake, N1,
N2, N3/4, REM.

From the overnight PSG-recordings the ECG (Lead II),
thoracical effort signal measured by respiratory inductive
plethysmography and a movement signal (calculated as the
absolute value from a three-dimensional accelerometer sen-
sor). ECG, respiration, and acceleration have sampling rates
of 256 Hz, 32 Hz, and 32 Hz, respectively.

B. Data preprocessing and feature extraction

The features are mainly extracted from [3]. They are
strongly oriented towards non-invasive measurements and do
not rely on high-quality signals. Most importantly, breathing,
heart rate, and the amplitude of movement are used to extract
a small feature set of 10 different features. Signal prepro-
cessing mostly is filtering the ECG-Signal to improve QRS-
Detection. A short overview of the features, including a short
description, is given in Table II. For in-depth calculation
details, please refer to [3]. The feature values have been
normalized by calculating the mean for the whole night for
every patient [3].

TABLE I
CLASS DISTRIBUTION

Class Number Class Names

Five Classes Wake N1 N2 N3/4 REM
6621 5296 11460 5921 3922

Four Classes Wake Light Deep REM
6621 16756 5921 3922

Three Classes Wake NREM REM
6621 22677 3922

C. Temporal Feature Stacking

Sleep stages are by default assigned every 30 s, but recent
papers have shown that accessing information before and
after the epoch improves classification [3, 5, 11]. Goldammer
et al. [5], as well as Sun et al. [11] incorporate 270 s and
300 s centered around the current epoch to enable their
convolutional neural networks to extract features from a
longer duration before and after the epoch that should be
classified. On top of that Sun et al. [11] also employ a
recurrent neural network to represent even longer temporal
contexts in their classification. This approach reaches very
high performances in terms of Cohens Kappa and Accuracy.
Others used post-processing steps like transition probabilities
between different stages [3, 10]. In these approaches, we
decided to employ a method that we call temporal feature
stacking to incorporate information of surrounding epochs to
the classifier. The idea of this paper and the distinction to

TABLE II
TABLE OF FEATURES.

Abbreviation Short description

HR mean heart rate [1/min] of epoch

HBI Mean temporal RR-Interval [msec] epoch

HRV Heart Rate Variability, calculated as mean difference
of successive R-Peaks intervalls of epoch

RA R(k)-Algorithm by [7]

BM The sample mean of body movement during
the epoch

TSDM Mean respiratory depth of exhalation during
the epoch

PSDM Mean respiratory depth of inhalation during
the epoch

VBR Median respiratory volume during breathing
cycles

VIN Median respiratory volume during inhalation

DA D(k)-algorithm by [7]
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Fig. 2. The results over multiple methods and the number of surrounding epochs to stack.

[3] is to concatenate features from surrounding epochs to the
current epoch’s features. This approach, in conjunction with
the chosen machine learning method, sets us apart from our
previous publication.

The concatenation results in a feature vector with (2k +
1) ∗ N features, where k is the number of epochs prior
and after the current one and N is the number of features
one calculates per epoch (N equals 10 in the case of this
paper). Unfortunately, for large k, this might result in the
curse of dimensions, where the feature space has such a
high dimensionality that the classifier can separate each
sample perfectly and, as a consequence, overfits heavily.
To counteract this, we employ random forests which are
known to be resistant to high dimensionalities [1]. This
enables us to stack the features without additional feature
selection. Unfortunately, due to our stacking method, we
lose 2k samples for every patient since the epochs at the
beginning of a night, and the end does not have previous
or following epochs. In the process, we, therefore, lose a
maximum of 36∗2k samples. For our analysis, we change k
from zero up to 30. Therefore we lose a maximum of 2160
samples or 6.5 %. In our analysis, we also employ three
methods to concatenate features from surrounding epochs.

• Stacking. Concatenate features from surrounding
epochs to both sides.

• Subtraction. Here we subtract the features from the
current epoch from the features of surrounding epochs
and concatenate this subtraction.

• Division. Here we divide features of surrounding epochs
by the features of the current epoch and concatenate the
result. In order to avoid zero division, we set all zeros

in the features of the current epoch to the machine ϵ of
8 Byte floating-point numbers.

D. Classifier design and training method

The classifier is a Random Forest Classifier that consists of
500 Trees. It is trained using the bagging method and only
learning from a maximum of 12000 samples per tree. As
mentioned in the previous chapter, we employ an ensemble
of binary trees to counteract the high dimensionality of up
to 610 features (for k = 30).

During training, we incorporate the heavy class imbalance
already visible in table I by setting an upper bound of 10000
samples per class. This, together with the 12000 samples per
tree, guarantees that each tree sees at least samples of more
than one class. For evaluation, we implement Leave-One-
Out-Cross-Validation on a patient level, which guarantees
the maximum amount of training data and patient-level
separation.

III. RESULTS

The results in this research paper will be twofold. In
the first step, we are empirically trying to find the optimal
stacking method and stacking length by training the ensemble
for three different class separations, three methods, and
31 different durations. For each of these combinations, we
employ Leave-One-Out-Cross-Validation on patient-level to
obtain a gross statistic for Cohen’s κ and accuracy (calculated
with the common/merged confusion matrix of all results).
We then analyze the best combination by class accuracy,
kappa, and confusion matrix to give in-depth information
about the classification results. This also helps to make
the algorithm comparable to other results, as accuracy and
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kappa are heavily influenced by the class distribution of the
test data. The first stage of evaluation results can be seen
in Figure 2. The confusion matrix for the best performing
classifier and four classes can be found in Table III.

IV. DISCUSSION

A. Optimal length of interest and method comparison

The results show an increase for almost all stacking
methods within a k of zero to five (up to ten additional
epochs). Overall the accuracy and κ could be increased
significantly within a range of up to 15 % κ. These results
show that temporal feature stacking can improve classifica-
tion results for the temporally related classes of sleep staging.
Comparing the three different class divisions, performance is
inversely proportional with the amount of classes from three
to five classes and therefore the difficulty of the classification
tasks. In terms of the different methods stacking and subtrac-
tion show the best performances. Comparing stacking and
division, one can notice a small section at the beginning of
the graphs (0 < k < 12) where subtraction shows a sharper
increase in classification performance, but after this point,
stacking is equal or better for most cases. For all cases, there
is no improvement after k = 30. For the stacking method, we
achieve the optimal κ for all class divisions around k = 25.
Here the performance reaches a κ of 0.44, 0.50, and 0.58 for
five, four, and three classes.

B. Analysis of the final classifier

From the previous section, it became clear that a k of
25 with a simple stacking of features improves classification
performance best. We will do further analysis on four stages
of sleep since it is the most common class division. We now
employ the best parameter k = 25 and allow the training
algorithm to search through all features for every split and
every tree. To give an in-depth view of the classification
performance, the confusion matrix for four classes is shown
in Table III. The best performing classifier reaches a κ
of 0.51 and an accuracy of 69 % for four classes. Also,
it achieves class accuracies over 50 % for every class,
which shows the balanced classification performance. The
overall performance is comparable or better to other state-
of-the-art classifiers found in Table II in [13]. Moreover, the
results are comparable with [13], when looking at one step
classification. We achieve these results using just ten features
and the proposed temporal feature stacking in comparison to
the 74 features and about 6 % of the training data used in
[13] (36 to 625 patients). Radha et al. [9] use ten times
more features and eight times the amount of patients to
achieve their extraordinary results of κ = 0.61. In the most
recent, most comprehensive, and best-performing research
work of [11], the deep neural networks achieve a κ of 0.58
using breathing and heart rate signal. In comparison to our
approach, we achieve a lower performance, but the used
network in [11] has around 15 million trainable parameters
and is trained using 8682 PSG recordings compared to the
36 recordings in this paper.

TABLE III
CONFUSION MATRIX FOR STACKING, k = 25 AND FOUR CLASSES

Classifier

Wake Light Deep REM
Wake 3492 1793 82 70

Expert Light 1461 12491 1611 780
Deep 187 1920 3743 46
REM 354 1400 79 1911

Accuracies 0.64 0.76 0.63 0.51

V. CONCLUSION

Looking at these results, we want to emphasize that we
do not aim for maximum performance in comparison to
the most recent State-Of-the-Art-Classifiers, but we want
to show a generic approach that can be used to enhance
classification performance to temporally related classes while
dealing with a restricted feature set and small-scale datasets.
The presented approach with temporal feature stacking can
be employed to other feature sets and temporal classifications
problems. It isn’t restricted to sleep stage classification and
the features employed in this study. In our experiment,
we could enhance kappa and accuracy significantly (around
0.15). Comparing these metrics to other State-of-the-Art
classifiers, we achieve comparable performance with much
fewer features and training data available. For the presented
problem of sleep stage classification 51 timesteps (k = 25)
and features stacking resulted in the best performance for
all tested cases. In the future, we will conduct further
analyses combining State-of-the-Art feature sets, for example
from [13], and our approach to improve the classification
performance. We hypothesize that results from some of the
comparison studies mentioned in the discussion could also
be improved by temporal feature stacking applied to their
respective feature sets.
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