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Abstract— The prefrontal asymmetry (FA) in the alpha band
is a well-known physiological correlate of the emotional valence.
Several methods for assessing the FA have been proposed in
literature, but no studies have compared their effectiveness
in a comprehensive way. In this study we first investigated
whether the association between FA and valence depends on
the computational methods and then, we identified the best
one, namely the one giving the highest correlation with the
self-reports. The investigated factors were the presence of a
normalization factor, the computation in time or frequency
domain and the cluster of electrodes used. All the analyses were
implemented on the validated DEAP dataset. We found that the
number and position of the electrodes do not influence the FA,
in contrast with both the power computation method and the
normalization. By using a spectrogram-based approach and by
adding a normalization factor, a correlation of 0.36 between
the FA and the self-reported valence was obtained.

I. INTRODUCTION

The automatic measurement of emotions, using e.g. low
cost and wearable devices [1], is a key topic in several
modern disciplines, such as Affective Computing [2], Brain-
Computer Interfaces [3], Neuroergonomics [4] and Con-
sumer Behavior [5].

A great contribution in the emotion measurement is given
by validated datasets. They contain emotional stimuli along-
side with both the corresponding subjective evaluations and
objective bioelectrical responses. The emotional datasets are
typically used by researchers as a benchmark to train and
test automatic emotion recognition systems [6].

According to the Dimensional Theory, emotions can be
identified by two dimensions: the arousal, ranging from
boring to exciting, and the valence, ranging from pleasure
to displeasure [7]. They both underline various physiological
correlates. The valence, in particular, can be assessed from
the neural activity of the prefrontal cortex [8].

Compared with the right one, a greater activity of left
prefrontal cortex correlates with an approach response to a
stimulus. Conversely, compared with the left one, a greater
activity of the right prefrontal cortex is correlated with a
withdrawal. This difference in the prefrontal cortex activity
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is called “prefrontal asymmetry”, or simply “frontal asym-
metry” (hereinafter, FA) [9].

The approach-withdrawal response [9] correlates with the
valence for most of the emotions, except for anger, where
a negative valence is associated with an approach response
[10]. It is worth noting that the extent to which FA can
be considered as moderator or mediator of emotions is still
debated [11] and its robustness in measuring the emotional
valence have been sometimes questioned [10]. Nevertheless,
the FA is still generally considered as “the index” of emo-
tional valence [8].

The FA is computed as the difference in the alpha power
between the right and the left hemispheres. As shown in Sect.
II, FA can be computed in various ways, depending on the
combination of the following 3 factors:

• Cluster - number and position of the electrodes;
• Processing - domain for the processing (time or time-

frequency);
• Normalization - presence or absence of a normalization

term.
To the best of our knowledge, no studies have compared

these factors in a comprehensive way.
In this study we investigated the different computational

approaches to FA, correlating their results with the emotional
assessment. Then we identified the best one, namely the one
giving the highest correlation with the self-reported valence.

All the computational approaches were implemented on
the validated DEAP dataset [12] considering, in particular,
the electroencephalographic data and the scores from the
self-reported valence.

II. STATE OF THE ART

Among all the existing neuroimaging tools, the electroen-
cephalogram (EEG) is the most widely used because of its
low cost, noninvasivity and high temporal resolution [13].

When measured with the EEG, the FA is defined in terms
of alpha asymmetry, since the electrical power in alpha band
(8 − 12 Hz) is inversely related to the neural activity: a
greater left-over-right prefrontal activity corresponds to a
greater right-over-left alpha prefrontal asymmetry and vice-
versa [11].

FA can be computed as a score, obtained in the frequency
domain, or as a time-varying signal, obtained in either the
time or time-frequency domain. As shown in Sect. II-C, the
two definitions are at least approximately equivalent, so long
as comparing the FA score with the temporal average of the
FA signal.
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A. FA score

The FA score (hereinafter, A) follows the original def-
inition of frontal alpha asymmetry [14]. It is obtained by
calculating the Welch’s periodogram of the signals recorded
from 2 homologous prefrontal electrodes, one located on the
right and one on the left side. Then, the corresponding Power
Spectral Densities (PSDs) are integrated over the alpha band,
in order to obtain right (R) and left (L) average powers.
Finally, the average powers are subtracted, as [15]:

A = R− L (1)

Typical electrode locations include the mid-frontal (F4,
F3) and the front-lateral (F6, F5 or F8, F7) regions, while
the frontal-pole (FP2, FP1) is less commonly reported [11].

In order to obtain a more robust estimate, instead of two
homologous electrodes, two clusters of electrodes positioned
on homologous locations of the prefrontal cortex can be
considered [16]. Right (CR) and left (CL) cluster average
powers are calculated by averaging the average powers
within each cluster:

CR =
1

NR

NR∑
i=1

Ri

CL =
1

NL

NL∑
i=1

Li

(2)

NR and NL are the number of electrodes in the right and left
cluster, respectively. Ri and Li are the i−th average powers
in the left and right cluster, respectively.
A is then obtained by the difference between CR and CL

[16]:

A = CR − CL (3)

As a step before the subtraction, values are often log-
transformed, in order to mitigate the skewness of the power
values [17].

B. FA signal

An alternative representation of the FA is a time-varying
signal, A[n]. It is obtained by subtracting, as in (1), two
instant alpha powers, calculated in the time domain by
squaring the alpha-filtered signal. The signals come from 2
homologous prefrontal electrodes: 1 on the right, R[n], and
1 on the left, L[n] [18].

Similarly to A, A[n] can be computed considering more
than 2 electrodes. The instant powers of multiple electrodes
are averaged together into a right and a left cluster instant
power, CR[n] and CL[n], computed as in (2). Then, A[n] is
computed as in (3) [19].

Typical clusters include (Fp2, AF6, AF4, F4) and (Fp1,
AF7, AF3, F5) [20]; (AF6, AF8) and (AF5, AF7) [19]; (Fp2,
AF4, AF6, AF8) and (Fp1, AF3, AF5, AF7) [21].

Instead of filtering and squaring a raw signal, the in-
stant powers R[n] and L[n] can be calculated in the time-
frequency domain by integrating over the alpha band the

spectrograms of the raw signals from 2 homologous elec-
trodes. When multiple electrodes are considered, the cluster
instant powers are still computed by averaging the instant
powers within each cluster [22].

As with A, R[n] and L[n] can be log-normalized before
the subtraction [22].

C. Score-signal equivalence

The temporal average of A[n], obtained following the
spectrogram method, is equivalent to A, obtained by the
Welch’s periodogram, either considering 2 homologous elec-
trodes or, due to the linearity of the average operation, 2
clusters of homologous electrodes.

Likewise, the temporal average of A[n], obtained by the
filtering method, is almost equivalent (implicitly assuming
as negligible the power in the filter’s transition band) to A,
obtained by the Welch’s periodogram, either considering 2
homologous electrodes or, due to the linearity of the average
operation, 2 clusters of homologous electrodes.

D. Normalization

In order to mitigate the inter-individual differences in EEG
powers, A is normalized by adding the quantity (R + L)
as denominator to (1) [23]. This is mostly applied to not
log-transformed data, giving almost equivalent results to the
subtraction of the corresponding log-transformed data [15]. It
has to be noted that this normalization has been also applied
to log-transformed data [24]: rather than a normalization, it
corresponds to the nonlinear transformation logRL(R/L).

III. METHODS

A. The DEAP Dataset

The DEAP dataset [12] contains the bioelectrical data
and the self-reports of 32 healthy subjects acquired while
watching 40 different music video clips.

An initial pool of 120 music videos, spanning uniformly
the 4 quadrants of the Russel’s circumplex model [25], was
created. Half were selected semi-automatically, using tags
from a music enthusiast website and half manually by the
DEAP’s authors. The final set of 40 videos was selected
from the initial pool using a web-based interface: users
rated the videos based on the perceived valence, arousal and
dominance. For each quadrant of Russell’s circumplex model
the 10 videos closest to the extreme corner were chosen.
For each video, the 60-second-long segment with the highest
emotional highlight score was extracted.

Bioelectrical data include EEG, skin-conductance, respi-
ration, and others. The EEG was recorded from 32 channels,
12 of which on the frontal and pre-frontal regions: 6 on the
left (FP1, AF3, F3, F7, FC5, FC1) and 6 on the right side
(FP2, AF4, F4, F8, FC6, FC2). The sample rate was 512 Hz.

The self-reports include the subjective ratings of each
video clips, expressed in terms of valence, arousal, domi-
nance and liking - all assessed trough the Self-Assessment
Manikin [26].
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B. Processing

DEAP dataset is publicity available on a dedi-
cate web site (http://www.eecs.qmul.ac.uk/mmv/
datasets/deap/) and contains both the raw and pro-
cessed bioelectrical data. The EEG was processed with the
following steps: common average reference, down-sample to
128 Hz, band-pass filter (4.0−45.0 Hz) and artifact removal
using the Independent Component Analysis (ICA). In the
present work we used the processed EEG data.

Considering only the prefrontal electrodes (6 in each
side), 26 − 1 = 63 different clusters can be identified. For
each cluster, we computed the A[n] using the filter and
spectrogram methods described in Sect. II. The filter method
was based on a zero-phased band-pass Butterworth filter (4th
order) between 8 and 12 Hz. The spectrogram was based
on a short-time Fourier transform (STFT) using a 1 s long
Hamming window with 50% of overlapping.

In both cases we applied the log-transformation and com-
puted the normalized and not normalized FA. Finally, A was
computed by temporal averaging A[n].

For each subject l, an FA vector Al was created by
concatenating the A of each stimulus. Similarly, the valence
vector vl was created by concatenating the corresponding
valence assessments.

C. Statistical Analysis

The correlation between the FA vector and the self-
reported valence was computed by means of the Spearman’s
correlation coefficient ρ:

rl,m,c,n = ρ(vl,Al,m,c,n) (4)

where vl = (vl(1), ..., vl(N))T is the valence vector and
Al,m,c,n = (Al,m,s,n(1), ..., Al,m,s,n(N))T is the FA vector.
The indices l = {1, ..., Nl}, m = {1, ..., Nm}, c =
{1, ..., Nc} and n = {1, ..., Nn} are, respectively, the par-
ticipant, method, cluster and normalization indices.

The set of the 8064 correlation coefficients (Nl = 32,
Nm = 2, Nc = 63, Nn = 2) described in (4) formed the
raw correlation table. Only the subset of significant (i.e. p ≤
0.1, not corrected for multiple comparisons) elements were
considered for the analyses.

A total of 2589 significant correlations were analyzed
using a 3-way ANOVAs, considering as factors: the method
(2 levels: Spectrogram, S and filtering, F), the normalization
(2 levels: normalized, N and un-normalized, U) and the
cluster (63 levels). The statistical analyses were performed
using JASP v.0.14 [27].

IV. RESULTS

Significant main effects for method (F (1, 2337) =
215.045, p < 0.001) and normalization (F (1, 2337) =
64.520, p < 0.001), as well as a significant interaction effect
for method × normalization (F (1, 2337) = 149.904, p <
0.001) were found.

The following results are reported as mean (M) and
standard error (SE). Post-hoc comparisons (Bonferroni cor-
rected) confirmed that F (M = 0.018, SE = 0.010) was

associated to a lower correlation than S (M = 0.220, SE =
0.009). N (M = 0.174, SE = 0.010) was associated to
higher correlation than U (M = 0.063, SE = 0.010).
Finally, in Table I the results for the method × normalization
interaction are reported. As visible also in Fig.1, the combi-
nation of S and N gives the best computational method for
FA, corresponding to a correlation of 0.357.

TABLE I
MARGINAL MEANS - METHOD × NORMALIZATION

95% CI
Method Norm. Mean Lower Upper SE

F N -0.010 -0.039 0.020 0.015
S 0.357 0.334 0.381 0.012
F U 0.045 0.017 0.073 0.014
S 0.082 0.055 0.108 0.013

Norm = Normalization; Mean = Marginal Mean.
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Fig. 1. Correlation (r) between the valence and the asymmetry index
computed for the two methods (F, S) and with/without normalization (N,
U).

V. CONCLUSION
In this paper we investigated the reliability of the FA in

measuring the emotional valence with respect to 3 factors:
the cluster of electrodes, the method (spectrogram or filter-
ing) and the normalization. The aim was to select the best
approach to be used in emotions assessment. By using the
validated DEAP dataset [12], we tested the performances
of different computational methods, obtained by combining
the above-mentioned factors. The figure of merit was the
correlation between the FA and the self-reported valence.

We did not find any significant effect for the cluster.
However, we found significant effects for both the method
and the normalization.

The non-significant effect for the cluster suggests that the
FA could be effectively computed using even only 2 pre-
frontal electrodes. Even if the FA is not correlated to the
number of used electrodes, a sufficient (e.g. 20 or more)
number of channels is still required for an effective ICA
denoising [28] and, consequently, a cleaner EEG signal for
the FA computation.

The found positive effect of the normalization is in
line with the literature, where an effect in reducing inter-
individual differences has been reported [23]. In comparison
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to the filter, the better performance of the spectrogram could
be due to the not-ideal implemented filter, as noted in section
II-C. Indeed, the non-infinite steep filter adds to both R and
L spectral power outside the alpha band that could exhibit a
different asymmetric pattern related to the emotional valence.
This hypothesis should be further verified.

Overall, the found correlations are low (< 0.4), confirming
that the prefrontal asymmetry is not always a robust measure
of the emotional valence [10]. The results, however, are in
line with the literature that reports low and sometimes non-
significant values. In [29], the authors reported a maximum
correlation value of 0.16, while in [30] the authors found a
maximum correlation value of 0.19. In [31], the maximum
beta coefficient for the linear regression between frontal
asymmetry and valence was of 0.3 and in [32] the correlation
was not significant.

In conclusion, after the assessment of the factors influenc-
ing the FA, we suggest as the best technique the use of the
normalization term in the FA[n], computed by means of the
spectrogram method.
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