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Abstract— Colours can induce several psychological effects,
conditioning perceptions, cognitive/emotional states and human
performances. In this exploratory study we investigated the
effect of a yellow light exposure, obtained filtering the ambient
light with coloured glasses, on the human’s psychological
functioning. In particular we wanted to assess if people are
more able to focus when exposed to a yellow light. We recorded
EEG, SC, HR and gaze-related data from 16 subjects (50%
split in experimental and control group) during the execution
of a reactivity test (the Hazard Perception Test, HPT). Com-
pared with the control group, the experimental group showed
increases in concentration, focus, visual attention and arousal,
as measured by increases of first fixation duration and Beta
over-Alpha ratio (BAR) as well as by decreases of distraction,
workload, and number of gaze revisits.

I. INTRODUCTION

The effect of colours on human psychology, performances
and emotions have been demonstrated in literature [1].

In order to assess the affective and cognitive changes
due to colours, different techniques, based on either a
direct or an indirect approach, have been proposed. The
direct approach is based on bioelectrical measures, such as
Electroencephalography (EEG), Skin Conductance (SC) and
Heart Rate (HR), while the indirect approach is based on
psychometric tools, such as associations between colours and
emotional terms (e.g., adjectives), semantic differentials and
personal rating scales [2].

In a previous paper, we investigated the effect of the blue
colour, showing its “wake-up” property [3]. In the present
work we assessed the properties of the yellow. We produced
a “yellow light perception” filtering the ambient light with
a pair of custom-made glasses, as an effective alternative to
direct light exposure [4].

By a psychological point of view, only few studies so
far tested (directly or indirectly) the cognitive and emotional
effects of the yellow light, however, ambivalent results were
reported. Yellow colour showed a focusing effect, measured
as a decrease in reaction times, an enhance in concentration
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Milan, Italy (corresponding author: marco.bilucaglia@iulm.it).

R. Laureanti and L. T. Mainardi are with the Department of Electronics,
Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy.

M. Zito and V. Russo are with the Department of Business, Law,
Economics and Consumer Behaviour “Carlo A. Ricciardi” and Behavior
and Brain Lab IULM – Neuromarketing Research Centre, Università IULM,
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[5] and an increase in reading speed [6]. An arousing effect,
measured by SC (but not by HR), was also reported [7].
By contrast, no effects in modulating emotional responses
to affective pictures, as measured by late positive potentials
(EEG recordings), were found [8].

In this exploratory study we investigated the physiological
responses to the exposure of a yellow-filtered light during
the execution of a reactivity test. We selected several EEG
metrics to assess cognitive states [9], cognitive workload
[9] and arousal [10]. Additionally, HR, Skin Conductance
Response (SCR) and Skin Conductance Level (SCL) were
used to measure arousal [7]. Finally, fixation related mea-
sures allowed the assessment of visual attention [11].

II. METHODS

A. Instrumentation

EEG data were recorded using a B-Alert ×10 (ABM, Inc.),
a portable wireless EEG headset with a sample frequency of
256 Hz and a resolution of 12 bits. The device has 9 Ag/AgCl
electrodes, located at the F3, Fz, F4, C3, Cz, C4, P3, POz, P4
sites of the 10–20 system. Two Ag/AgCl adhesive patches,
placed on the mastoids (M1, M2), were used as ground and
reference.

EEG data were collected using iMotions (iMotions A/S,
Copenhagen, Denmark) software, an integrated research plat-
form that supports study design, stimuli presentation and
real-time synchronization of various devices. Data stream
from B-Alert to iMotions, established by means of a Soft-
ware Development Kit (SDK), consisted of raw EEG data,
as well as several cognitive metrics.

The SC signal was recorded placing 2 Ag/AgCl electrodes
on the index and ring finger from the non-dominant hand.

In order to have an accurate and minimally invasive HR
measure [12], we recorded the Blood Volume Pulse (BVP)
signal using a photopletismographic sensor placed on the
middle finger from the same hand.

BVP and SC sensors were connected to the FlexComp
System (Thought Technology, Inc.), a 10 channels general-
purpose bio-signal acquisition device. The sample frequency
was set at 256 Hz and the resolution at 14 bits. FlexComp
data were collected using BioGraph Infiniti (Thought Tech-
nology, Inc.) software.

In order to ensure a synchronization between iMotions
and BioGraph Infinity data, a photosensor connected to
the FlexComp device was attached to the stimulus monitor
to discriminate between high and low luminance level. A
synchronization sequence, consisting of alternated black (B)
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and white (W) patterns (500 ms each, in the order W-B-W-
B-W-B), was showed at the beginning of the experiment.

Finally, gaze data were recorded through iMotions with
a ProSpectrum ×60 (Tobii, LLC), a 150 Hz EyeTracker bar
with 30° max gaze angle, 0.3° of accuracy and 0.06° RMS
of precision.

B. Study Population and Experimental Protocol
We used a pair of custom-made glasses in order to filter

the ambient light and produce a “yellow light” perception,
as an alternative to direct light exposure. Yellow lenses
specifications were: 2 mm thickness, 50% of visible light
transmission and cut-off wavelength at 610 nm [8].

The experiment involved 16 healthy subjects (8 men), with
age ranging from 30 to 51 years (M = 40.2, SD = 5.3).
We randomly assigned the subjects to 2 balanced groups: 8
wearing the lenses (L group) and 8 not wearing any lenses
(nL group) as a control group.

The study protocol was approved by the ethical committee
of Università IULM and informed written consent was ob-
tained from each participant before starting the experiment.

Each subject sat on a chair placed in front of a 23.8 inches
monitor (FlexScan EV2451, EIZO KK) located in a 7 m × 3
m experimental room, artificially lit by florescence lights and
in absence of any natural light. The experimenter positioned
SC and EEG sensors and checked the quality of the signals
before starting the recording. The contact impedance of the
EEG sensors was measured and ensured to be less than 10
kΩ [13].

After the synchronization sequence, the subject performed
the B-Alert Benchmark in order to extract the cognitive
metrics (see the “B-Alert Metrics” paragraph). A 60 s
neutral stimulus was then presented to record the subject
baseline level of activity. A 60 s eye-closed baseline (EYC)
was administrated in order to estimate the individual alpha
frequency (IAF). After EYC, L group wore the lenses.

Finally, subjects performed a web-based version (avail-
able at http://hazardperceptiontest.net) of the
Hazard Perception Test (HPT), to measure their reactivity
during a driving scenario. HPT consists of videos of real
driving scenes recorded from the driver’s point of view in
which another road user creates a potential traffic conflict
(e.g., a dangerous and accident-prone situation). Once the
offending road user appeared on the scene, the participant
was asked to press the keyboard’s spacebar as quick as
possible [5]. The HPT consisted in 3 videos with a similar
assignment (namely Task 1, Task 2 and Task 3) presented in
a randomized order. At the end, each Task was automatically
scored according to how fast the subject recognized the
hazards.

B-Alert metrics
B-Alert SDK provides several cognitive metrics, related

to discrete cognitive states and and cognitive workload.
Cognitive state metrics include High and Low Engagement,
Distraction and Drowsiness, while cognitive workload met-
rics include Workload BDS, Workload FBDS and Workload
Average.

Engagement is a cognitive state linked to vigilance which
include arousal, intrinsic motivation, motivation for success
and concentration. The related metrics reflect the engagement
level (high or low). The Distraction metric assesses the
condition of being side-tracked during a cognitive task,
while Drowsiness measures the somnolence level, generally
associated to sleep deprivation [14]. Cognitive state metrics
are built on a generalized classification model (previously
validated on a large population) and individualized (i.e.,
adapted to the specific subject) by means of a benchmark. In
particular, the metrics express the posterior class-probability
of the 4 classes [9].

Cognitive workload is related to the mental effort required
to complete a cognitive task and expresses the relationship
between the resources required to carry out the task and the
resources available to, and hence supplied by, the operator
[14]. Cognitive workload metrics derive from 2 generalized
classification models previously built on 2 different tasks
(namely the forward and backward digit span, FBDS and the
backward digit span, BDS). Workload Average is the mean
probability between Workload BDS and Workload FBDS [9].

Cognitive state and cognitive workload metrics are pro-
vided as time signals with a temporal resolution of 1 s.

EEG processing

The EEG signal was processed using Matlab (The Math-
works, Inc.) and the EEGLab toolbox [15].

Raw data were band-pass filtered between 0.1 and 30 Hz
and notch filtered on both 50 and 100 Hz in order to remove
the line noise. Then, an Independent Component Analysis
was performed. Independent Components (ICs) were auto-
matically labelled using ICLabel in terms of posterior class-
probability of being originated from a particular source, such
as “brain”, “eye-movement” or “EMG” [16]. ICs with a
“brain” class probability lower than 70% were marked as
“artifacts” and removed. Not-marked ICs were thus back
projected to the original EEG space. Finally, EEG data were
re-referenced to the common average.

The Individual Alpha Frequency (IAF) was estimated
as the peak frequency of the Power Spectral Density in
the extended alpha band (7 ∼ 12 Hz) during the EYC
baseline. Alpha (α) and beta (β) bands were defined from
the estimated IAF as, respectively, α = [IAF − 2; IAF + 2]
and β = [IAF + 2; IAF + 16] [17].

As an estimation of the arousal, we used the Beta-over-
Alpha Ratio (BAR), defined as the ratio between the average
of β-filtered and α-filtered channels [18].

SC and BVP processing

The SC signal was band-pass filtered using a zero-phase
4th order FIR filter (0.001 ∼ 0.35 Hz); then, a threshold
for SC extreme values (0.05 ∼ 60 µS) and extreme rate of
changes (±8 µS/s) was used in order to detect artifacts [19].
The artefactual points were replaced by a linear interpolation
using adjacent points. From artifact-corrected SC, both the
tonic SCL and the phasic SCR were extracted by means of
the cvxEDA algorithm [20].
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BVP signal was low pass filtered using a zero-phase 2nd
order Butterworth filter; then, all peaks were identified using
the Pan-Tompkins algorithm [21] and the instant HR was
computed from the inverse of the peak-to-peak distance.
Finally, the HR signal was linearly interpolated and filtered
with a 2 s moving average filter in order to obtain a smoother
signal.

Baseline normalization

The SC indices, the HR and BAR signals were epoched
according to each HPT Task and z-score transformed with
respect to the baseline epoch, according to the Equation:

xz(t) = (x(t) −mB)/sB , (1)

where xz(t) is the z-transformed signal, x(t) is the original
signal, mB and sB are, respectively, its temporal mean and
standard deviation computed inside the baseline epoch.

Gaze data processing

Gaze data represent the temporal variations of gaze’s po-
sition. In this study, gaze data were extracted from dynamic
areas of interests (AOI), manually drawn and fitted frame-by-
frame on the hazardous object. Only fixation-related metrics
were considered, as they have been previously related to
visual attention and perception [11].

From each AOI the following metrics (all expressed in mil-
liseconds, except for revisit that is unitless) were extracted:
first fixation duration (FFD), average fixation duration, time
spent (the total fixation duration on the AOI), revisits (the
number of outer fixations that return back on the AOI).

The gaze metrics of one subject were not considered due
to a calibration issue. The final sample consisted, thus, of 15
subjects (7 L, 8 nL).

Statistical analysis

Statistical analyses were performed using Matlab. For
every subject, all signals were time averaged across the tasks.
Averaged signals, fixation-related metrics and the scores
associated with each task were grouped for condition.

We set the significance level to α = 0.10, as common
practice in exploratory studies with small samples [22].

For each variable, the Kolmogorov-Smirnov test for nor-
mality was applied (with a significance level α = 0.05):
based on its results, the Wilcoxon signed-rank test or the
two-samples t-test was used.

Additionally, the effect size was estimated by means of
the Cohen’s d, defined as [23]:

d = (m1 −m2)/[(s1 + s2)/2], (2)

where m1, m2 are the means and s1, s2 are standard
deviations of, respectively, L and nL groups. Large, medium,
and small effect sizes are commonly placed at values of
0.8, 0.5, and 0.2, respectively. The significance of the effect
size was assessed through its bootstrapped 95% confidence
intervals, following the percentile approach [24].

In evaluating the results, we focused on the effect size,
rather than on the p-value: if a metric showed a not-
significant effect size, we labelled it as “not significant”,

independently from the p-value of the test. This is a common
practice for studies with a low sample size, where the p-value
should be interpreted tentatively at best [25].

III. RESULTS
SC related metrics and HR, as well as HPT scores, did

not show any significant group difference in any task.
EEG and gaze-related metrics showed significant group

differences, both in terms of a large and significant effect size
and, in some cases, a p-value lower that 0.1, as summarized
in Table I.

In Task 1, the L group showed a significant (in both effect
size and p-value) lower Distraction, higher Drowsiness and
lower Workload of all types. In Task 2, the L group showed
significant (in both effect size and p-value) higher Drowsi-
ness and lower Workload FBDS, as well as a higher BAR.
Additionally, Distraction, Workload Average and Workload
BDS were significantly (effect size only) lower for L group.
In Task 3 L group showed a significant (effect size only)
higher BAR and lower Distraction.

Regarding the gaze data, in Task 1, the L group showed a
significant (in both the effect size and p-value) greater FFD
and lower number of revisits. In Task 2 no significant group
difference was found, while in Task 3, the L group showed
a significant (effect size only) shorter time spent.

TABLE I
SIGNIFICANT DIFFERENCES BETWEEN GROUPS IN ALL TASKS.

L nL p-value Cohen’s d
Task 1

Distraction 0.02 (0.02) 0.12 (0.10) 0.065* -1.624§
Drowsiness 0.04 (0.03) 0.00 (0.01) 0.009* 1.931§
W AVG 0.41 (0.21) 0.59 (0.11) 0.050* -1.144§
W BDS 0.39 (0.21) 0.56 (0.11) 0.050* -1.053§
W FBDS 0.42 (0.21) 0.61 (0.11) 0.021* -1.224§
Revisits 2.86 (2.27) 5.38 (1.92) 0.058* -1.202§
FFD 512 (51) 297 (111) 0.001* 2.663§

Task 2
Distraction 0.02 (0.02) 0.10 (0.10) 0.195 -1.282§
Drowsiness 0.08 (0.05) 0.00 (0.00) <0.001* 2.807§
W AVG 0.43 (0.21) 0.59 (0.12) 0.105 -0.916§
W BDS 0.42 (0.21) 0.56 (0.12) 0.195 -0.798§
W FBDS 0.44 (0.21) 0.61 (0.12) 0.065* -1.018§
BAR 0.40 (0.45) -0.00 (0.14) 0.045* 1.360§

Task 3
Distraction 0.02 (0.02) 0.10 (0.09) 0.161 -1.390§
BAR 0.52 (0.55) 0.09 (0.23) 0.105 1.096§
Time Spent 2676 (1820) 4032 (933) 0.161 -0.984§

Values are given as average (std). * marks a significance at test level
(t-test or signed-rank test), while the symbol § indicates a significance for
the Cohen’s d estimate. W stands for Workload; AVG stands for Average.

IV. DISCUSSION
In this exploratory study we investigated the yellow lenses’

effect in increasing attention, focus, arousal, using both in-
direct (HPT scores) and direct (physiological data) methods.
In evaluating the results, we focused on the significance of
the effect size, rather than on the test’s p-value, as suggested
for studies with a small sample size [25].

Similarly to [5], [6], we found in all the Tasks an increase
in concentration for L group, measured by a decrease of the
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distraction values, as well as a decrease in workload for the
L group in Tasks 1 and 2 only.

In line with [7], L group showed an arousing effect
(increase of BAR values) in Tasks 2 and 3 only.

Compared with the nL group, L group showed an increase
in FFD and a decrease in number of Revisits in Task 1,
suggesting an increase of visual attention [11]. Furthermore,
in Task 3 the total time spent on the AOI was lower in the
L group, suggesting a higher “hazard detection efficiency”.

L group’s increase of drowsiness in Tasks 1 and 2 seems
inconsistent with the other results, but this could be related to
a limit of the classification model used for this metric. In fact,
the drowsiness effectively tracks performance decrements
associated with sleep deprivation, while under-performs for
rested (i.e., not sleep deprived) subjects [9].

These results suggested focusing and arousing properties
both at gaze and bioelectrical (EEG metrics) level. The mag-
nitude of this “yellow lens effect” was large, as confirmed by
the Cohen’s d estimates of EEG-related metrics, but probably
not large enough to produce measurable changes at indirect
level: in fact, no group differences in HPT scores were found
in any task, showing how direct measures seem to be more
sensible to quantify cognitive state changes [26].

Overall, the results showed some variability among the
different tasks. This could be related to the intrinsic task’s
differences, but this should be confirmed by a within group
analysis (e.g. repeated measure ANOVA). Being an ex-
ploratory study, the results need to be further investigated
by a future confirmatory study, using both a larger sample
and more conservative statistical methods.

In conclusion, yellow lenses seem to be a promising
useful tool to improve human attention in critical focusing-
demanding circumstances, such as job/sport activities or
driving.

ACKNOWLEDGMENT

The authors would like to thank Carl Zeiss Vision Italia
S.p.A. for the given support and for providing the lenses.

REFERENCES

[1] A. J. Elliot and M. A. Maier, “Color psychology: Effects of perceiving
color on psychological functioning in humans,” Annual Review of
Psychology, vol. 65, pp. 95–120, 2014.

[2] L. Wilms and D. Oberfeld, “Color and emotion: effects of hue,
saturation, and brightness,” Psychological Research, vol. 82, pp. 896–
914, 2018.

[3] M. Bilucaglia, R. Laureanti, M. Zito, R. Circi, A. Fici, F. Rivetti,
R. Valesi, S. Wahl, and V. Russo, “Looking through blue glasses:
bioelectrical measures to assess the awakening after a calm situation,”
in 2019 41st Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC). IEEE, 2019, pp. 526–529.

[4] T. Schilling, A. Sipatchin, L. Chuang, and S. Wahl, “Tinted lenses
affect our physiological responses to affective pictures: An EEG/ERP
study,” in 2nd International Neuroergonomics Conference: The brain
at work and in everyday life. Frontiers Research Foundation, 2018.

[5] P. Lacherez, A. K. Saeri, J. M. Wood, D. A. Atchison, and M. S.
Horswill, “A yellow filter improves response times to low-contrast
targets and traffic hazards,” Optometry and Vision Science, vol. 90,
no. 3, pp. 242–248, 2013.

[6] R. S. Hollingsworth, A. K. Ludlow, A. J. Wilkins, R. I. Calver, and
P. M. Allen, “Visual performance and the use of colored filters in
children who are deaf.” Optometry and Vision Science, vol. 92, no. 6,
pp. 690–9, 2015.

[7] R. Küller, B. Mikellides, and J. Janssens, “Color, arousal, and per-
formance - a comparison of three experiments,” Color Research and
Application, vol. 34, no. 2, pp. 141–152, 2009.

[8] T. Schilling, A. Sipatchin, L. Chuang, and S. Wahl, “Looking through
“rose-tinted” glasses: The influence of tint on visual affective process-
ing,” Frontiers in Human Neuroscience, vol. 13, p. 187, 2019.

[9] R. R. Johnson, D. P. Popovic, R. E. Olmstead, M. Stikic, D. J. Leven-
dowski, and C. Berka, “Drowsiness/alertness algorithm development
and validation using synchronized EEG and cognitive performance to
individualize a generalized model,” Biological Psychology, vol. 87,
no. 2, pp. 241–250, 2011.

[10] A. Mert and A. Akan, “Emotion recognition from EEG signals by
using multivariate empirical mode decomposition,” Pattern Analysis
and Applications, vol. 21, no. 1, pp. 81–89, 2018.

[11] A. Ciceri, V. Russo, G. Songa, G. Gabrielli, and J. Clement, “A
neuroscientific method for assessing effectiveness of digital vs. print
ads,” Journal of Advertising Research, pp. 10.2501/JAR–2019–015,
2019.

[12] V. D. Corino, R. Laureanti, L. Ferranti, G. Scarpini, F. Lombardi,
and L. T. Mainardi, “Detection of atrial fibrillation episodes using
a wristband device,” Physiological Measurement, vol. 38, no. 5, pp.
787–799, 2017.

[13] S. R. Sinha, L. Sullivan, D. Sabau, D. San-Juan, K. E. Dombrowski,
J. J. Halford, A. J. Hani, F. W. Drislane, and M. M. Stecker, “American
clinical neurophysiology society guideline 1: Minimum technical
requirements for performing clinical electroencephalography,” Journal
of Clinical Neurophysiology, vol. 33, no. 4, pp. 303–307, 2016.

[14] C. A. Mark, D. V. Poltavski, T. Petros, and A. King, “Differential
executive functioning in young adulthood as a function of experienced
child abuse,” International Journal of Psychophysiology, vol. 135, pp.
126–135, 2019.

[15] A. Delorme and S. Makeig, “Eeglab: an open source toolbox for
analysis of single-trial eeg dynamics including independent component
analysis,” Journal of neuroscience methods, vol. 134, no. 1, pp. 9–21,
2004.

[16] L. Pion-Tonachini, K. Kreutz-Delgado, and S. Makeig, “Iclabel: An
automated electroencephalographic independent component classifier,
dataset, and website,” NeuroImage, vol. 198, pp. 181–197, 2019.
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