
  

Abstract—This paper presents a real-time electrocardiogram 

(ECG) analysis system that can detect atrial fibrillation (AF) 

using machine learning algorithms without a cloud server. The 

system takes advantage of the heterogeneous structure of the 

Zynq system-on-chip (SoC) to optimize the tasks of local 

implementation of AF detection. The features extraction is based 

on multi-domain features including entropy features and RR 

interval features, which is conducted using the embedded micro 

controller to generate significant features for AF detection. An 

AF classifier based on artificial neural network (ANN) algorithm 

is then implemented in the programmable logic of the SoC for 

acceleration. The validation of the proposed system is performed 

by using the real-world ECG data from MIT-BIH database and 

CPSC 2018 database. The experimental results show an 

accuracy 93.60% and 97.78% when tested on these two 

databases respectively. The AF detection performance of the 

embedded algorithm is majorly identical to that of the PC-based 

algorithm, indicating a robust performance of hardware 

implementation of the AF detection. 

I. INTRODUCTION 

Atrial fibrillation (AF) is the most common dysrhythmia 
that affects adults, with an estimated 2.2 million people 
diagnosed in the United States and 4.5 million in the European 
Union [1]. The prevalence of AF in China has increased by 20-
fold from 2001 to 2012 [2]. According to a follow-up study of 
5,070 patients, AF is also considered as a significant risk factor 
of stroke, especially for the elderly. A large proportion of AF 
patients are asymptomatic [3, 4]. Long-term 
electrocardiogram (ECG) is an effective tool for diagnosing 
AF [4]. Various methods have been evaluated to provide 
automatic AF detection based on ECG recordings, including 
statistics or information analysis method, machine learning, 
and deep learning algorithms [5],. Some researchers deploy 
deep learning algorithm on cloud for AF detection [5], [6]. 
Some researchers deploy machine learning algorithm on 
embedded system [7]-[8]. The implementation of AF 
algorithms is usually either based on cloud or embedded 
systems, with a tradeoff between computation power and local 
independency.  

Local implementation on embedded system is preferred in 
AF detection cases for their real-time capability and 

convenience to deploy. The independent nature of such a 
system is also suitable for emergency care situations and low-
resource areas. AF edge detection system usually has lower 
communication latency compared with cloud system [9]. 
Some research implements light-weight CNN model on 
mobile device with an acceptable 87.22% accuracy [10]. 

Micro-controllers and field programmable gate arrays 
(FPGA) are two common types of hardware platforms that 
have been used in local AF detection tasks. For example, 
MATLAB tools were used to extract an input vector for ANN 
with wavelet transform in FPGA to detect AF [11]. On the 
other hand, some simple algorithms could be simply handled 
by micro-controllers, although the overall performance is 
worse than model-based classifiers.  

Our research group has developed an AF detection 
algorithm based on a combination of entropy-based features 
and RR-interval-based features[12]. Using this new feature 
combination, the feasibility and performance of this new 
feature combination have been evaluated and verified in our 
previous study using a high-performance PC. The complicated 
mixture of mix-domain features from different time scales 
suggests a need for a flexible sequential controller. 
Furthermore, the trained model is above the computation 
capability of regular 16 to 32-bit micro-controllers, which calls 
for the operation of a dedicated hardware module for co-
processing. Therefore, the implementation of the proposed 
algorithm in a local embedded hardware system could not be 
simply assigned to a single micro-controller or a single FPGA. 

In this study, we implement our algorithm by using a 
heterogeneous Pynq-z2 platform. The Pynq-z2 is equipped 
with a Zynq SoC that consists of a dual-core Cortex-A9 
processor, also known as the programmable system (PS), and 
an Artix7 FPGA that is also called the programmable logic 
[13]. We use the heterogeneous system to extract mix-domain 
features in PS and build a neural network in PL to conduct the 
AF classification task. The ANN is deployed in PL with 
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Fig. 1. Overview of the heterogeneous system architecture and 

the implementation for AF detection algorithms 
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hardware acceleration using quantification and pipelined 
unrolled parallelism. The proposed system was tested using 
real-world data from open-source databases, and the 
performance of the hardware acceleration and AF detection are 
evaluated. The result indicate that the accuracy loss is 
acceptable in hardware implementation. 

The structure of the paper is as follows. Section II 
introduces the hardware and software methods. The 
experimental setup and results are explained in Section III. 
Section IV concludes the study and discusses future work. 

II. METHOD 

A. Overview of the System 

Fig. 1. demonstrates the overall structure of the system 
architecture. The system is based on Pynq-z2, a heterogeneous 
system with the combination of PS and PL based on Zynq-
7000 FPGA. The PS module undertakes flexible feature 
extraction tasks in the ARM kernel, while repetitive and stable 
computation tasks will be assigned to PL and executed. 

ECG data could be acquired from a universal ECG 
database or sent from an ECG analog-front-end circuit in the 
system. After that, the RR interval is obtained after the process 
of the QRS detector. Then the classification features are 
extracted based on three entropy methods and four statistic 
methods from the RR interval. The three entropy methods are 
Sample entropy (SampEn), AF entropy (EnAF) and 
Coefficient of SampEn (CosEn) while four statistic methods 
are mean value of RR interval (𝑅𝑅𝑚𝑒𝑎𝑛 ), min value of RR 
interval (𝑅𝑅𝑚𝑖𝑛 ), max value of RR interval (𝑅𝑅𝑚𝑎𝑥 ) and 
medium of RR interval (𝑅𝑅𝑚𝑒𝑑𝑖𝑢𝑚). These seven features are 
extracted in PS and then transmitted to PL as input layer in 
ANN. The neural network model is pre-trained on a PC in 
Pytorch framework. The trained model is programmed into PL 
with the Vivado HLS tool. The PL then shows the ECG 
waveform and the corresponding AF detection results on an 
LCD screen via an HDMI port. The system’s major 
components are the features generation and AF classification, 
which are handled in PS and PL, respectively. The details of 
these two components are described in the subsections below. 

B. The Features Extraction in PS 

1) Features Algorithms Design  

Features extraction consists of serval steps. Firstly, the RR 
interval is generated by a QRS detector. Information entropy 
algorithms then compute corresponding index within 10 
seconds RR interval. The mix-domain and mixed time scale in 
features extraction need dynamic memory allocation for 
optimized performance. Hence they are implemented in PS. 
What’s more, the PS is also responsible for the control of the 
data flow.  

Our group developed a QRS detector from a modified 
version of the classical P&T QRS detector. Information 
entropy represents the complexity of time series [14]. SampEn 
entropy is a widely used algorithm for analyzing physiological 
signals [15]. CosEn and EnAF are specially designed for ECG 
signal analysis and AF classification. CosEn has an 
improvement in short time signal analysis by converting the 
consideration of 𝑅𝑅𝑚𝑒𝑎𝑛 . EnAF is another information 
entropy algorithm to classify AF effectively by replace 
Cherchev distance in SampEn with ranged function and 

normalized fuzzy entropy. The change makes the distance 
computation more robust. 

The calculation of SampEn entropy is the fundamental 
algorithm in entropy algorithms. Entropy is a negative natural 
logarithm of conditional probability. Usually two sequences 
matched within tolerance 𝑟  in m  length will also match in 
length 𝑚 + 1. The number of matched templates is the core 
computation in entropy estimation. The final entropy 
estimation is the ratio of match times: 

   𝑢𝑖
(𝑚)

= {𝑥𝑖, 𝑥𝑖+1, ⋯ , 𝑥𝑖+𝑚−1}(1 ≤ 𝑖 ≤ 𝑁 − 𝑚) (1) 

𝐶𝑖
(𝑚)(𝑟) =

∑ 𝑑[𝑢𝑖
(𝑚)

, 𝑢𝑗
(𝑚)

]𝑖≠𝑗

𝑁 − 𝑚 − 1
 (2) 

𝐵(𝑚)(𝑟) = ln [(𝑁 − 𝑚)−1 ∑ 𝐶𝑖
(𝑚)(𝑟)

𝑁−𝑚

𝑖=1

] (3) 

SampEn(𝑚, 𝑟, 𝑁) = 𝐵(𝑚)(𝑟) − 𝐵(𝑚+1)(𝑟) (4) 

CosEn is an improvement on SampEn entropy which has a 
better performance in short time signal [16]. CosEn by 
introducing tolerance matching r and𝑅𝑅𝑚𝑒𝑎𝑛: 

CosEn = SampEn − ln(2𝑟) − ln 𝑅𝑅𝑚𝑒𝑎𝑛  (5) 

Our group proposed EnAF which has a very well 
performance in AF detection by normalizing distance and 
calculating the similarity between templates with fuzzy 
function [17]. The distance function and template calculation 
in SampEn have been modified in EnAF for improving AF 
detection performance. 

Except for information entropy algorithms, the character of 
RR interval is also essential information for AF detection 
because the critical feature of AF is the irregularity of RR 
interval. Hence, statistical information such as max, min, 
median, and mean RR interval is chosen. 

2) PS Implementation  

A PYNQ Linux (v2.3) based on Ubuntu 18.04 is running 
in PS with 16G micro-SD memory card. A Jupyter Notebook 
IDE supporting software programming language Python has 
been installed in PYNQ operating system. The main Python 
packages used in this embedded system is math, numpy and 
scipy for signal processing and mathematical calculation. 

PS with the configuration above could execute flexible 
computation tasks for features algorithms. The code in 
notebook file imports corresponding numerical calculation 
and signal processing packages and extracts features from raw 
ECG signal or RR interval. 

C. The ANN Accelerator in PL 

ANN is widely implemented in many fields. ANN is an 
architecture of different layers with cells connected with its 
neighbor layer’s cells. The training process is implemented in 
a PC, and the trained model with its parameters is obtained. 
The forward inference process is implemented in FPGA for the 
classification task. A five-layered ANN with Rectified Linear 
Unit (ReLU) at hidden and output layers is implemented in the 
PL of the system. The number of cells in each layer are 7, 10, 
10, 10, 10, and 2, respectively. In the forward classification 
process, matrix computation is the vital computation step. The 
ANN classification model is not only implemented in 
hardware circuits but also optimized with parallel design. 

We implement forward propagation of our ANN 
classification model in PL to accelerate AF detection in 
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hardware. The details of the forward process of the ANN are 
presented in Table II. It is shown that the forward propagation 
process needs many matrix operations, which are mainly 
multiplication and addition operations without complex 
procedures. 

1) Model Quantization - Fixed point parameters  

The pre-trained model’s parameters are usually stored in 
floating-point type. The computation mechanism for float 
requires much more computation power and increases the 
system complexity compared to the integer type or fixed-point 
type in PL. Therefore, we evaluated a solution by storing the 
model with truncated decimal parts. This process is also 
known as quantization, which transfers floating-point type 
parameters to a fixed-point or integer by truncating the decimal 
part. After quantization, model size decreased. However, the 
cost of the size optimization is the accuracy of the model. 
Therefore, we tested the quantification with different bit sizes 
to achieve a balance between accuracy loss and model-size 
reduction. The results shown in Table IV. It can be observed 
that the accuracy remains stable from 12-bit to 8-bit 
quantification and decreases dramatically after 6 bits. In our 
research, 8-bits truncation quantization is implemented since 
it achieves the most size reduction without losing accuracy. 
The strategy is multiplying parameters with 56 and then drop 
the decimal part.  

2) Parallel Design 

ANN classification is accelerated in PL with hardware 
circuits and optimized with designs such as pipelining and 
unrolling to enhance inference speed and save resources. 
Unrolled parallelism means all calculations is executed at the 
same time. Pipelined parallelism means each cell is computed 
with an Initiation Interval to reduce latency [18]. Fig. 2  
Illustrates the parallelism process. Data in same row is read 
and computed in same clock period. Different row’s data is 
read with one clock’s Initiation Interval delay. The total 

latency for whole ANN hardware computation is 88 clock 
cycles.  

III.  EXPERIMENTAL SETUP AND RESULTS 

A. Experimental Setup 

MIT-BIH data [19] was used for training and testing in our 
research. All data are labeled as AF or non-AF manually. All 
data are segmented into 66,900 10-second ECG segments with 
33450 AF segment and 33,450 non-AF segment. 60,000 
records were chosen as the training set and the left is test set. 
What’s more, CPSC 2018 data is also used as the validation in 
the experiment. 

The PL implementation for our ANN AF detection model 
requires 53 DSP, 5,981 LUT and 164 LUTRAM to accomplish 
computation on the resource allocation aspect. As shown in 
Table Table III , the most used resource in FPGA is DSP 
modules. This may be the result if the computation-intensive 
nature of ANN model embedding. 

B. Experimental Results 

Experiment with the records from MIT-BIH database 
shows that true positive (TP), false positive (FP), false 
negative (FN), true negative (TN) reports 31,767, 2,596, 1,683, 
30,854. Table  summarizes the classification result from both 
databases. The accuracy (Acc) of MIT-BIH AF data is 93.60% 
and the sensitivity (Se) is 94.97%, specificity (Sp) is 92.24%. 
1804 records from the CPSC 2018 database [20] were also 
used to test the performance of AF detection digital core. For 
CPSC 2018 database, the TP, FP, FN, TN is 873, 11, 29, 891. 
The accuracy of the CPSC 2018 database is 97.78% with 96.78 
sensitivity and 98.78% specificity.  

The model deployed on a high-performance computer in 
[12] reports an accuracy of 95.13% on the MIT-BIH AF 
database and 98.45% on the CPSC2018 database. The 
performance of the local embedded system report 1.53% and 
0.67% of accuracy reduction for both databases compared to 
the results from the system based on a high-performance PC. 
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Fig. 2 Illustration of the parallel acceleration strategy with 

initiation interval and overall latency. 

TABLE II ACCURACY LOSS FOR DIFFERENT LEVEL OF QUANTIFICATION 

Fixed-point Accuracy Accuracy loss 

Original float type 93.61% 0 

12 bits 93.01% 0.60% 
10 bits 93.01% 0.60% 

8 bits 93.01% 0.60% 

6 bits 92.68% 0.93% 
4 bits 91.68% 1.93% 

3 bits 70.22% 23.39% 

2 bits 52.41% 41.20% 
1 bits 47.59% 46.02% 

 

TABLE III RESOURCE UTILIZATION ON HARDWARE AF DETECTION 

DESIGN 

Resource  Utilization Available Utilization% 

LUT  5,981 53,200 11.24 

LUTRAM  164 17,400 0.94 
FF  3,128 106,400 2.94 

DSP  53 220 24.09 

BUFG  1 32 3.13 

 

Table I ANN FPGA IMPLEMENTATION PROCESS 
Algorithm in PL The forward process in ANN model 

input vector: 𝐗 =  [𝑥0, 𝑥1, ⋯ , 𝑥𝑛−1] 

matric parameters: 𝑾𝒎𝒏 =  [

𝑤0,0 ⋯ 𝑤0,𝑛−1

⋯ ⋯ ⋯
𝑤𝑚−1,0 ⋯ 𝑤𝑚−1,𝑛−1

] 

bias vector: 𝑩𝒎 =  [𝑏1, 𝑏2, ⋯ , 𝑏𝑚−1] 
1 for i = 0 to m do  

2    𝑦𝑖 = 0 
3    for j = 0 to n do 

4       𝑦𝑖 =  𝑦𝑖 + 𝑤𝑖,𝑗 ∗ 𝑥𝑗 

5    yi =  yi + bi 
6    If 𝑦𝑖 < 0 then 

7      𝑦𝑖 = 0 

output vector: 𝐘 =  [𝑦0, 𝑦1, ⋯ , 𝑦𝑚−1] 
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Although the model's accuracy is not the highest among 
current AF detection algorithms, the AF detection model 
deployed on the embedded system still has an acceptable 
accuracy loss and overall performance to conduct AF detection 
tasks. 

It could be observed that CPSC 2018 has a higher 
performance than the MIT-BIH database even though the 
model is trained on the MIT-BIH database. The reason may be 
that AF detection model performance varies with different 
types of AF patients. The CPSC 2018 has more patients 
number than MIT-BIH AF database though MIT-BIH has 
more samples, making the model in CPSC 2018 perform better 
generalization characteristics.  

The time latency of the ANN AF detection system with a 
heterogeneous structure is lower compared to the embedded 
dual-Cortex A9 CPU in our system. The operation frequency 
of the embedded CPU is 666.67MHz with Jupyter Notebook 
IDE in Ubuntu 18.0 operation system. The ANN AF detection 
is implemented in an Artix-7 FPGA (i.e., the PL) with a clock 
frequency 100MHz. Experiment results showed in Table  
suggest that the time latency in the PL is faster than PS. Artix-
7 with the ANN AF detection digital core need 0.257ms per 
record with communication latency. Without the 
communication time for data transferred to the PL, the time for 
computation is 0.88μs. At the same time, embedded CPU needs 
2.18ms per record. The whole time of digital AF detection core 
is 10 times faster than embedded CPU. The computation time 
without communication is nearly 2500 times faster than 
embedded CPU. The result shows that FPGA brings benefits 
in time latency in this hybrid structure. 

IV. DISCUSSION AND CONCLUSIONS 

We proposed an atrial fibrillation automatic detection 
system implemented on heterogeneous Pynq-z2 SoC. The 
feature extraction and model implementation tasks are 
distributed on microcontroller and FPGA components such 
that the model could be efficiently embedded with acceptable 
accuracy loss while receiving benefits from the resource 
optimization and speed acceleration at the same time. This 
implementation strategy could potentially improve the local 
performance of trained machine-learning-based algorithms 
that have been validated on high-performance platforms, 
which could move forward the application of AI-assisted 
algorithms in clinical scenarios. 

Much further work still requires our efforts. Hardware 
acceleration for features extraction calculation would be one 
of the topics that of out interest. Furthermore, we could also 
evaluate the potential of federal learning among different 
hospitals by combining the information and results from 
scattered local implementations with different patients and 
conditions. 
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TABLE V DATA DETAILS FOR ECG RECORDS 

Database Acc Se Sp Acc in [12] 

MIT-BIH 93.60% 94.97% 92.24% 95.13% 
CPSC 2018 97.78% 96.78% 98.78% 98.45% 

 

TABLE IV COMPUTATION TIME BETWEEN SOFTWARE AND HARDWARE 

Chips 

Index 

Dual-Cortex A9 

（Embedded CPU） 

Artix-7 

（FPGA） 

Frequency 666.67Mhz 100MHz 

Delay 2.18ms 0.257ms (0.88μs) 
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