
  

  

Abstract— Upper-limb prosthetic control is often challenging 
and non-intuitive, leading to up to 50% of prostheses users 
abandoning their prostheses. Convolutional neural networks 
(CNN) and recurrent long short-term memory (LSTM) 
networks have shown promise in extracting high-degree-of-
freedom motor intent from myoelectric signals, thereby 
providing more intuitive and dexterous prosthetic control. An 
important next consideration for these algorithms is if 
performance remains stable over multiple days. Here we 
introduce a new LSTM network and compare its performance 
to previously established state-of-the-art algorithms–a CNN and 
a modified Kalman filter (MKF)–in offline analyses using 76 
days of intramuscular recordings from one amputee participant 
collected over 425 calendar days. Specifically, we assessed the 
robustness of each algorithm over time by training on data from 
the first (one, five, ten, 30, or 60) days and then testing on 
myoelectric signals on the last 16 days. Results indicate that 
training on additional datasets from prior days generally 
decreases the Root Mean Squared Error (RMSE) of intended 
and unintended movements for all algorithms. Across all 
algorithms trained with 60 days of data, the lowest RMSE for 
unintended movements was achieved with the LSTM. The 
LSTM also showed less across-day variance in RMSE of 
unintended movements relative to the other algorithms. 
Altogether this work suggests that the LSTM algorithm 
introduced here can provide more intuitive and dexterous 
control for prosthetic users, and that training on multiple days 
of data improves overall performance on subsequent days, at 
least for offline analyses. 

I. INTRODUCTION 

In the United States 1.6 million individuals have lost a limb 
due to either dysvascular diseases like diabetes (54%) or to 
trauma (45%) [1]. For nearly one in every 200 individuals, 
limb-loss is a life-long struggle with chronic pain, depression, 
and functional disability[1], [2]. State-of-the-art prostheses 
have the capability to mimic the complex movements of the 
human hand. However the majority of commercial prostheses 
use only two electromyographic (EMG) electrodes to control 
up to two degrees of freedom [3], [4]. Unsatisfied with the 
current standard of care, up to 50% of upper-limb amputees 
abandon their prostheses [5], citing ineffective control as a 
primary reason [6]. 

Even though the physical hand is missing after an 
amputation, amputees still retain the neural circuits and, in the 
 

*This work was funded by: NIH, NIDCR, NICHD, Office of the Director, 
Award Number DP5OD029571. Additional support provided by DARPA, 
BTO, Hand Proprioception and Touch Interfaces program, Space and Naval 
Warfare Systems Center, Pacific, Contract No. N66001-15-C-4017;  

C. J. Thomson (corresponding author; caleb.j.thomson@utah.edu) and G. 
A. Clark are with the Department of Biomedical Engineering, University of 
Utah, Salt Lake City, UT  84112 USA  

case of most transradial amputees, the forearm musculature 
that are used to control the hand. Neural and EMG activity 
from the residual nerves and muscles can be recorded through 
implanted electrodes and then correlated to motor intent under 
a supervised learning approach.  

A variety of different algorithms have been used to 
correlate these bioelectric signals to motor intent in order to 
classify discrete hand grasps or regress continuous joint 
angles. These algorithms generally fall into the broad 
categories of Wiener filters, population vectors, probabilistic 
methods, and recursive Bayesian decoders [7]. Previous works 
by this group have used a modified Kalman filter (MKF) [8] 
and convolutional neural networks (CNNs) [9], [10] to regress 
continuous joint angles and control multiple degrees of 
freedom of a prosthesis in real-time.  

Our group and others have shown that recurrent neural 
networks–that learn temporal dependencies in the bioelectric 
signals (e.g., long-short term memory networks; LSTMs)–can 
provide more accurate prosthetic control [11], [12]. However, 
the vast majority of prosthetic control algorithms were trained 
and tested using data collected within the span of a single day. 
The few prior works that have investigated across-day 
performance used algorithms that were trained on a single 
dataset from one day [11], [13]. Here, we specifically sought 
to answer the question if training on aggregate data from prior 
days improves or degrades performance on subsequent days. 
Training on more data generally improves performance [14], 
but day-to-day variations in training data have also been 
shown to degrade performance [13].  

We demonstrate that training on data from multiple prior 
days improves overall performance on subsequent days and 
reduces the variance of algorithm performance day to day. We 
also show LSTM networks result in the best overall 
performance, regardless of the amount of training data used. 
This work constitutes an important step towards the 
development of robust prosthetic control and has broad 
implications for how training data should be collected for 
neuroprostheses. 

II. METHODS 

A. Human Subjects and Implanted Devices 
Data from one transradial amputee was used in this study. 
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The participant, referred to as Subject S6 in prior work, was a 
57-year-old male whose left foot and left forearm were 
amputated 13 years prior due to trauma [15]. The participant 
had 32 intramuscular electromyographic recording electrodes 
(iEMGs; Ripple LLC, Salt Lake City, UT, USA) implanted 
into their residual arm muscles for 425 days. Additional 
information about the implanted devices and surgical 
procedures can be found in [16]. Informed consent and 
experimental protocols were carried out in accordance with the 
University of Utah Institutional Review Board. 

B. Data Collection 
A total of 76 datasets were collected from the participant 

over the span of the study. Each dataset consisted of 
prerecorded movements of a 12-degree-of-freedom virtual 
bionic arm or 6-degree-of-freedom physical prosthesis and 
EMG recordings while the participant actively attempted to 
mimic the prerecorded movements with their phantom limb. 
In general, datasets consisted of participants mimicking 
individual movements of flexion and extension of the five 
fingers and wrist, thumb intrinsic movement, and pronation 
and supination of the wrist. Each movement was repeated five 
to ten times. EMG recordings were sampled at 1 kHz using the 
Grapevine System (Ripple LLC, Salt Lake City, UT, USA). 
The 32 channels of continuous EMG signals were band-pass 
filtered with cutoff frequencies of 15 Hz (sixth-order high-pass 
Butterworth filter) and 375 Hz (second-order low-pass 
Butterworth filter). Notch filters were applied at 60, 120, and 
180 Hz. Differential EMG signals were calculated for all 
possible pairs of channels, resulting in 496 (32 choose two) 
differential recordings. The mean absolute value over a sliding 
300-ms window was then calculated at 30 Hz for all of the 
single-ended channels and differential pairs. The final training 
data consisted of 12 kinematic recordings from the 
predetermined movements of the prosthesis and the mean 
absolute value of 528 EMG channels. Additional information 
on the data collection and processing can be found in [6]. 

B. Training Data 
A total of 76 datasets were collected from the participant. 

The last 16 datasets (datasets 61-76) were used exclusively for 
testing the algorithms (Fig. 1). Each algorithm was trained 
with five different amounts of data: 1) a single prior dataset 
(dataset 60); 2) five prior datasets (datasets 56-60); 3) ten prior 
datasets (datasets 51-60); 4) 30 prior datasets (datasets 31-60); 
and 5) 60 prior datasets (datasets 1-60). When training with 
multiple datasets, the data from each dataset were 
concatenated together and treated as a single large dataset. 

C. Motor-decode Algorithms 
Three motor-decode algorithms were implemented in 

MATLAB 2020B. Two have been presented previously, a 
MKF [8] and a shallow CNN [9]. The third algorithm included 
in the comparison was a novel LSTM network. The input to 
the LSTM consisted of the 528 EMG channels at the current 
point in time. The LSTM architecture consisted of a single 
LSTM layer with 128 hidden units, three fully connected 
layers with 1056 units, ReLu activation between layers and a 
regression output. The regression output resulted in 12 
continuous values, one for each possible degree of freedom of 
the prosthesis. The LSTM and CNN were trained using 
Stochastic Gradient Descent with a learning rate of 0.01 and 
0.00001, respectively. For the MKF, 100% of the training data 
was used to train the algorithm. For the CNN and LSTM, 60% 
of the training data was used for training and the remaining 
40% was used for validation. Both the CNN and LSTM were 
trained for a maximum of 2000 epochs. The final output of the 
CNN was not modified with a threshold as has been done in 
the group’s previous work [9]. 

D. Performance Metrics 
The control algorithms were tested on 16 novel, unseen 

datasets (datasets 61-76). Performance was measured by the 
root mean squared error (RMSE) between the algorithm 
predictions and the target kinematics that the participant was 
attempting to mimic. The RMSE was divided into two 
categories: intended movement RMSE and unintended 
movement RMSE, as described in [8]. Intended movement 
RMSE measures the ability of the algorithm to replicate the 
participants desired movements (e.g., flexion or extension of a 
single DOF), whereas unintended movement RMSE measures 
the ability to eliminate cross-talk such that only the intended 
degree of freedom is active. The median RMSE from the 
intended and unintended movements was calculated for each 
dataset, such that comparisons were made against the RMSEs 
of each algorithm across all of the testing days (N = 16). 

A one-way non-parametric ANOVA (Kruskal-Wallis) was 
used to compare the three motor-decode algorithms (MKF, 
CNN, and LSTM). Separate ANOVAs were performed for 
intended and unintended movement RMSE. If any 
significance was found, subsequent pairwise comparisons 
were made using the Tukey-Kramer correction for multiple 
comparisons. Variance between motor-decode algorithms 
trained on 60 datasets was compared using a nonparametric 
two-sample F-test for equal variances (Ansari-Bradley test).  

 
Figure 1. Three different algorithms (LSTM, MKF and CNN) were trained using data from the one, five, ten, 30, or 60 most recent datasets. Data consisted 
on EMG recordings (EMG) and the participants desired kinematics (Kin). The algorithms were tested using data from the 16 unseen datasets. Performance 
metrics included across-day accuracy relative to the ground truth kinematics and across-day variability. 
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III. RESULTS 

A.  Training on prior datasets increases the accuracy of 
control algorithms on subsequent days 
We found that training on additional datasets from prior 

days improved the motor-decode algorithms’ accuracy. The 
CNN and LSTM had less intended movement RMSE when 
trained on the most recent 60 datasets compared to training on 
the single most recent dataset (p’s < 0.05, Fig. 2). The 
additional training datasets did not significantly change the 
intended movement RMSE of the MKF. Furthermore, the 
additional training datasets significantly reduced the 
unintended movement RMSE of the MKF and LSTM (training 
on one day vs training on 60 days; p’s < 0.05, Fig. 3), and 
trended towards reducing the unintended movement RMSE of 
the CNN (p = 0.08, Fig. 3). 

B. MKF produces more accurate intended movements when 
training data is limited 
We found that when only a single dataset was used for 

training, the MKF generally performed the best of the three 
algorithms. The MKF had significantly lower intended 
movement RMSE than the LSTM (p < 0.05) and trended 
towards having lower intended movement RMSE than the 
CNN (p = 0.11).  

C. CNN and LSTM produce more accurate intended 
movements when training data is abundant 
In contrast, when trained on 60 datasets the CNN and 

LSTM generally performed the best. The LSTM and CNN had 
significantly less intended movement RMSE than the MKF 
(p’s < 0.05, Fig. 2). No significant differences were found 
between the intended movement RMSEs of the LSTM and the 
CNN when trained on 60 datasets. 

D. LSTM has substantially less unintended movement and 
less across-day variability compared with the CNN and 
MKF 
We found that the LSTM consistently resulted in less 

cross-talk. That is, across all amounts of training data, the 

LSTM consistently had significantly less unintended 
movement RMSE than the CNN and MKF (p’s < 0.05, Fig. 3). 
Even though all algorithms had less unintended when trained 
with the full 60 datasets, the LSTM still outperformed the 
CNN and MKF (p’s < 0.05, Fig. 4). Furthermore, the LSTM 
also showed less across-day variance in unintended movement 
RMSE than the CNN and MKF (p’s < 0.05, Fig. 4).  

IV. DISCUSSION 

Neural and electromyographic recordings from implanted 
devices change day to day such that training data from prior 
days does not perform well on subsequent days [13]. Despite 
these day-to-day variations, we found that training on multiple 
days of data improved the accuracy of all algorithms. That is, 
including additional data from prior days (even if the old data 
is no longer the most accurate) resulted in less unintended 
movements for the MKF, CNN and LSTM. The CNN and 
LSTM (but not MKF) also demonstrated less error in intended 
movements when additional data from prior days was used for 
training. Overall, when trained on the most recent 60 datasets, 
the LSTM had the best performance, suggesting that it may 
lead to the best real-time, human-in-the-loop prosthetic 
control. 

Previous work from this group and others have shown that 
neural networks improve with increased amounts of data [10], 
[17]. The improvements seen with the CNN and LSTM are 
consistent with these prior results and provide additional 
motivation to leverage multi-day recordings when training 
prosthetic control algorithms, even if recordings vary day to 
day. 

Our findings also suggest that LSTMs may be a favorable 
control algorithm with similar performance to CNNs in 
intended movements, but better performance at eliminating 
unintended movements. This differs from the results presented 
in [11] where the researchers found CNNs to perform better 
than LSTMs. This may be due to the fact that the networks 
used in [11] were deeper than the those presented here, with 
the LSTM having four LSTM layers, and the CNN having two 
convolutional layers. In addition, both the LSTM and CNN 
had two main dataflows, one for EMG and one for recent 

 
Figure 2. The median RMSE for intended movements of the testing 
datasets was reduced with increased amounts of training data for the 
CNN and LSTM. The MKF showed little change in intended movement 
RMSE with increased training data. Numbers listed above a given 
condition represent statistically significant differences relative to other 
conditions (p’s < 0.05, pairwise rank-sum tests). The number denotes the 
compared training condition (number of training sets) and the color 
denotes the compared control algorithm. The MKF was generally better 
when trained with only a single dataset and was significantly worse 
when trained using the full 60 datasets. 

 
Figure 3. The median RMSE for unintended movements of the testing 
datasets was reduced with increasing amounts of training for all motor 
decode algorithms. The LSTM shows the smallest unintended 
movement RMSE for each number of training datasets. Numbers listed 
above a given condition represent statistically significant differences 
relative to other conditions (p’s < 0.05, pairwise rank-sum tests). The 
number denotes the compared training condition (number of training 
sets) and the color denotes the compared control algorithm.  
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kinematic position. The LSTM and CNN in [11] were also 
trained on only a single dataset under a different training 
paradigm.  

Prior work directly compared the CNN and MKF reported 
here on various activities of daily living and found they 
performed similarly [18]. However, clinical considerations 
favored the MKF since it is faster to train and less 
computationally expensive than the CNN [18]. Consistent 
with that, the MKF was the quickest control algorithm to train 
(Table 1). That said, the amount of time needed to train the 
LSTM and CNN would likely be appropriate when training on 
datasets across multiple days since training could take place 
between days while the participant uses an algorithm trained 
on subsequent days. Furthermore, the prediction times of the 
LSTM and CNN algorithms are both within the actuation and 
control speed of the prostheses (33-ms update speed). The 
LSTM also provided better across-day control than the MKF, 
specifically with unintended movements. Less variability 
would likely be advantageous in allowing users to adapt to and 
learn with their prosthesis. 

The results presented here consist of offline analyses from 
one amputee participant. It is not clear if the results seen here 
will be applicable to the general population of prosthesis users. 
It is also unclear how multi-day training and the LSTM will 
perform during real-time human-in-the-loop control. Future 
work will validate these approaches with multiple participants 
performing activities of daily living.  

V. CONCLUSION 
This work demonstrates strengths of LSTM networks for 

extracting motor intent from biological signals. In addition, 

this work highlights the importance of training prosthetic 
control algorithms on multiple datasets across many days – a 
feature that is uniquely beneficial to non-linear algorithms 
like the LSTM.  Altogether, the LSTM trained with 60 prior 
datasets provided significantly better performance than two 
state-of-the-art algorithms previously reported. 
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Table 1. Computational Time Taken to Train the Algorithms in 
Minutes (mean ± STD) 

Number of 
training 
datasets 

LSTM MKF CNN 

1 14.59 ± 1.61 0.12 ± 0.01 17.13 ± 0.35 
5 111.91 ± 13.14 0.84 ± 0.00 130.50 ± 0.44 

10 269.13 ± 28.46 2.12 ± 0.01 318.72 ± 1.00 
30 856.23 7.91 ± 0.12 1146.63 
60 1822.24 16.17 ± 0.28 2434.34 

 

 
Figure 4. The median RMSE for unintended movements of the testing 
datasets under the best possible training condition (i.e., the most data 
possible). The LSTM had significantly less unintended movement 
RMSE relative to the CNN and MKF (*, p’s < 0.05, pairwise rank-sum 
tests). The LSTM also had significantly less variance than the CNN and 
the MKF (#, p’s < 0.005, pairwise Ansari-Bradley tests). 

6174


