
  

  

Abstract— With the increase in life expectancy, as well as in the 
performance and complexity of healthcare systems, the need for 
fast and accurate information has also grown. EEG devices have 
become more accessible and necessary in clinical practice. In 
daily activity, artifacts are ubiquitous in EEG signals. They arise 
from: environmental, experimental and physiological factors, 
degrade signal quality and render the affected part of the signal 
useless. This paper proposes an artifact cleaning pipeline 
including filters and algorithms to streamline the analysis 
process. Moreover, to better characterize and discriminate 
artifacts from useful EEG data, additional physiological signals 
and video data are used, which are correlated with subject’s 
behavior. We quantify the performance reached by Peak Signal-
to-Noise Ratio and clinical visual inspection. The entire research 
and data collection took place in the laboratories of XPERI 
Corporation. 

Clinical Relevance—Since the occurrence of artifacts cannot 

be controlled, it is essential to have a precise process of 

recognition, identification and elimination of noise. Therefore, it 

is important to distinguish EEG artifacts from abnormal activity 

in order to minimize the chance of EEG misinterpretation, that 

can lead to false diagnosis, especially regarding the study of 

epileptiform activities or other neurologic or psychiatric 

disorders (e.g. degenerative diseases, dementia, depression, sleep 

disorders, Alzheimer’s disease, schizophrenia, etc.). 

I. INTRODUCTION 

The electroencephalogram (EEG) records the electrical 
activity of the brain measured on the scalp. An EEG 
experimental study consists in collecting EEG signals from 
several subjects in a laboratory controlled or free outdoor 
environment, while taking into account the significant inter- 
and intra-subject variability. The goal is to detect similarities 
and differences in brain activity responses for the working 
hypothesis in question. Although the EEG waveforms are 
designed to reveal the electrical activity of the cortex, they also 
record the electrical activities arising from sites other than the 
brain. Whereas, any activity that does not involve cortical 
origin is considered an artifact. Depending on the source that 
generates the artifacts, two classes can be defined: 
physiological artifacts and external artifacts [1]. Physiological 
artifacts are generated by the human body from sources other 
than the brain, such as: heart, muscle and eye artifacts. 
External artifacts come from outside of the body, as e.g. 
equipment and external sources. 

The recognition of artifacts, the detection of the source that 
generates them and their elimination is a highly important 
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process in the processing and analysis of EEG signals. The 
purpose of removing artifacts is to reduce the chances of 
misclassification and misinterpretation of brain activity. Since 
EEG activity is quite small, measured in microvolts (µV), one 
major challenge of EEG signal analysis is to detect and 
consistently remove these types of non-cerebral signals.  

This paper aims to remove different types of artifacts 
across subjects and testing scenarios using a simple to use 
pipeline to improve the EEG data cleaning process in terms of 
processing time and data quality performance. This 
preliminary step of pre-processing the EEG data is envisioned 
to be used for the analysis of a large-scale collection of EEG 
data, being a useful tool for clinical applications and brain 
computer interfaces (BCI). Therefore, the main purpose of this 
study is to provide a standardized, well defined pre-processing 
methodology that minimizes the impact of different types of 
signal artifacts regardless the subject’s EEG variability, 
scenarios and stimuli applied. The types of artifacts we address 
are both physiological (eye and eyelids movements, muscle, 
cardiac) and external artifacts (power line, electrode pop and 
physical subject’s movement), which are the commonly 
observed in EEG studies.  

II. RELATED WORKS 

In the literature, various methods applicable to EEG data 
cleaning are reported, but the artifact removal step remains an 
open problem for the EEG data processing. To our knowledge, 
there is no global standard used to remove EEG artifacts. 
Existing methods for the mitigation of EEG signal artifacts are 
divided in two main approaches: single artifacts removal 
approach and hybrid approach – where two or more methods 
are combined. Among the single artifact removal techniques, 
the following are noteworthy [2, 3]: 1) regression techniques 
and 2) Wavelet transform, used to filter the ocular artifacts; 3) 
Blind Source Separation (BSS): which uses a mixture of 
unsupervised learning methods with no prior information and 
extra reference channels; 4) Empirical mode decomposition 
(EMD) for removing muscle artifacts; and 5) Different 
filtering methods, e.g.: adaptive, Wiener and Bayes filtering. 
Among the hybrid approach, we note: 1) EMD – BSS, a good 
approach for muscle artifact removal under few-channel 
scenarios; 2) Wavelet – Independent Component Analysis 
(ICA) technique proposed to avoid shortcomings of ICA; 3) 
and BSS-SVM: when the recorded EEG data is decomposed 
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into multiple components and several of them are used as input 
to a set of SVM classifiers. 

The remainder of this paper is structured as follows: 
section III presents the study methodology, section IV 
describes the experiment, section V the pre-processing 
methodology, while section VI shows the pipeline 
methodology applied on different artifacts with the 
performance evaluation given by the reached Peak Signal-to-
Noise Ratio (PSNR) rates, complemented with discussions 
and conclusion in section VII. 

III. METHODOLOGY 

Artifact removal is a tedious task as the probability of their 
occurrence is difficult to model in practice. The current study 
aims to provide a sequence of standard methods to clean 
contaminated EEG data. We address the artifact removal using 
a BSS algorithm to clean the biopotential artifacts, to avoid the 
computational cost limits of hybrid methods and apply a 
filtering pipeline to remove the device related noise. Among 
the BSS algorithms, an ICA with Multiple Artifact Rejection 
Algorithm (MARA) approach [4] is applied. Signal sources 
are decomposed into linear fusion of cerebral and artifactual 
sources, as independent components (ICs) [5] and the clean 
signal is reconstructed by discarding the artifactual ICs. From 
the experience of previous EEG data analysis studies [6], we 
propose MARA as an efficient method for the removal of the 
above-mentioned artifacts and, in addition, we complement 
the ICs selection with the classification results of the ICLabel 
algorithm [7].  

To control physiological artifacts, we added additional 
sensors to our study: electrooculogram, (EOG), 
electrocardiogram (ECG), electromyogram (EMG) and 
photoplethysmogram (PPG), since the physiological signals 
are synchronized with the EEG data, the source of the artifacts 
can be precisely identified. Their use brings several 
advantages to the study: 1) the number and quality of recording 
sensors is increased, which is a requirement in most BSS 
algorithms that there should be as many measurement sensors 
as underlying sources [8], and 2) the additional sensors 
complement the EEG signals to describe the activities 
investigated within the EEG studies. To assess the 
performance of the proposed approach we have used both 
PSNR metric and clinician validation using the visual 
inspection approach. The two approaches were performed 
independently and cross-validated.  

IV. EEG PILOT STUDY EXPERIMENT 

A. Equipment 

The EEG data was acquired by a Neuron-Spectrum 5 EEG 
device with 21 electrodes (10-20 positioning), plus 5 
additional physiological signals: vertical EOGv, horizontal 
EOGh, bilateral masseter maxillary muscles EMG, ECG and 
PPG. Subject’s activity was recorded with a 4k resolution 
camera, synchronized with the EEG signals. The selection of 
EEG montages plays an important role in better capturing the 
neural activity. To generalize the analysis, we used referential 
and bipolar montages: Double Banana 21 (db21) and 
Monopolar 21 (m21, ear lobes references), the most common 
referential and bipolar montages referred in the literature [9].  

To cover a wide range of artifacts, we included various 
visual and auditory stimuli in the scenarios, played with a 4k 
resolution LCD and standard speakers. 

B. Participants and experimental scenario 

We collected EEG and video data from 10 participants (7 
males and 3 females) with an average age of 24 years old. All 
participants are employees of Xperi Corporation and received 
a priori information on the experiment. They expressed their 
consent to take part in the non-invasive experiment and their 
permission for brain signals recording. The data was 
completely anonymized. To qualitatively ensure the 
acquisition process, the neurologist expert validated the entire 
acquisition protocol. The possibility of any neurological 
disorder has been excluded and the Helsinki Declarations 
principles have been considered. The study took place in a 
laboratory environment, with normal environmental noise, as 
30 dB and low electro-magnetic interferences rates (E = 20 
V/m and M = 50 nT). To mimic EEG studies, participants 
achieved the experiments seated and were asked to relax, focus 
and reduce as possible extra body and eye movements. Each 
subject followed five scenarios with visual and/or auditory 
stimuli (1-3 min each): 1) relaxed mode (closed eyes); 2) 
relaxed mode (open eyes); 3) focused mode – cognitive 
matching exercise, with two images side by side (open eyes); 
4) auditory cognitive task providing answers out loud (closed 
eyes); and 5) a game on the phone (open eyes).  

V. EEG PRE-PROCESSING METHODOLOGY 

In practice, the artifacts are differentiated from EEG 
signals based on  physiological activity principles as the neural 
activity has a logical topographic field of distribution with an 
expected fall-off of voltage potentials, while artifacts have no 
logical distribution that defies the principles of localization. 

A. Filtering and artifacts removal 

The EEG pre-processing was performed by a chain of 
filters: low-pass filters for anti-aliasing, spatial filters for 
artifacts removal and high-pass filters for electrical current 
drifts removal.  We are interested in keeping a wider range of 
frequencies in order to envision the possibility to capture 
different neural activities, so we keep all the usual rhythms 
from delta to gamma (0.5 - 75 Hz). For capturing even lower 
rhythms or higher gamma activity, the frequency interval 
limits can be easily extended within filtering. The proposed 
pipeline includes, as follows:  

1) high-pass filtering: 0.5 Hz FIR filter, using least-squares 
error minimization and reverse with zero-phase effect digital 
filtering, as in [8]. 

2) 50 Hz Power Line cleaning with Cleanline algorithm [10]; 
Even though ICA has the capacity to clean power line noise, 
we applied this step before, to have a cleaner signal from 
electrical interferences and therefore aiming to improve 
sources detection. This step was applied three times to 
efficiently reduce even strong power line interferences (up to 
50dB), repetition which was set after thorough investigation.  

3) ICA-MARA algorithms: ICA Infomax Algorithm has 
been applied twice to improve components detection, since 
ICA uses random weights on first iteration for components 
detection, while in the second iteration, it better estimates the 
data after what it has learned on the first step. The automatic 
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Multiple Artifact Rejection Algorithm (MARA) [4] was used 
to investigate and select the components, in conjunction with 
the ICLabel algorithm [7]. We have chosen MARA selection 
as it is not limited to a specific type of artifact, and as section 
VI shows, it is able to handle various types of artifacts equally 
well. It classifies artifactual components ("reject vs. accept") 
by extracting six EEG signal features from the spatial, spectral 
and temporal domains. The ICLabel algorithm categorizes the 
components via crowd labeling latent Dirichlet allocation (CL-
LDA), considering composition over classes rather than 
indicating a discrete class and uses variance measures on 
fractions of the compositions as confidence. The final 
artifactual components were selected with clinician 
supervision, considering both methods. 

4) low-pass filtering: 75Hz Chebyshev type II, order 10 
(75Hz pass-band edge frequency, 3 dB ripple and 82 Hz 
stopband, 50 dB attenuation).  

The external physiological signals were filtered via 
acquisition software: ECG: 0.5-75Hz band-pass with 50Hz 
notch, EMG 10-100Hz with 50Hz notch and EOG: 0.5-15Hz. 

VI. PRE-PROCESSING RESULTS 

For signal processing and clinical investigations of the 
artifacts, we present the results of four representative subjects, 
chosen to have a variety number of artifact types with frequent 
occurrence. The pre-processing pipeline successfully detected 
and cleaned various types of artifacts as can be seen in the 
followings. Fig. 1 shows an artifactual Independent 
Component (Artif. IC) example as a mix of ECG and PPG 
activity, as seen in the time evolutions of the signals (Fig. 1.B 
and Fig. 1.C). In addition, the scalp map topography shows 
pronounced activity outside the scalp indicating an external 
source of noise (Fig. 1A), complemented by power spectral 
density (Fig. 1D) showing strong power in the frequencies 
above 10Hz (specifically, the curve does not follow the 
expected 1/f shape). The component was classified with 72% 
as ‘other’ by ICLabel and 31% by MARA. This example 
indicates a case when MARA classification can be 
supplemented by ICLabel. Between MARA and ICLabel, 
MARA obtained about 2-3 false negatives and ICLabel around 
5-7. This happened when the components were a mix of 
different sources and for these cases, we decided by comparing 
the components characteristics. While ICLabel tends to detect 
better brain and heart artifacts better, MARA is more 
successful at detecting localized artifacts, such as channel 
noise, as observed in our selection – but a thorough 
investigation should be performed to draw accurate 
conclusions.     

The data quality performance after the cleaning pipeline 
can be seen in Table 1, in relation to the mean PSNR values 
over all channels (using as ground truth a cleaned sample, 
filtered within 0.5-75 Hz with removed power line 
interferences, having no artifacts as detected by clinician 
validation). The signal noise is improved with about 60% on 
average as detected by PSNR. More than 9 Artif. ICs are 
detected; note that at least 3 ICs should be detected as artifacts: 
subtle horizontal and vertical eye movements and heart 
activity, even with closed eyes in the relaxed case. Subject S10 
was anxious and moved additionally; hence, more artifactual 
components were found, even in the relaxed scenarios (1, 2).  

 

Figure 1.  Heartbeat mixed with pulse ICA component and probabilities as 
determined by MARA and ICLabel algorithms. 

TABLE I.  ARTIFACTUAL CLEANING - PSNR IMPROVEMENT 

Montage: db21 No. artif. ICs PSNR (%) 

Subjects S1 S4 S1 S4 

scenario1 9 - 54.2 - 

scenario2 11 - 64.8 - 

scenario3 17 - 72.6 - 

scenario4 - 21 - 75.6 

scenario5 22 - 74.5 - 

Montage: m21 No. artif. ICs PSNR (%) 

Subjects S1 S9 S10 S1 S9 S10 

scenario1 11 12 17 40.8 27.8 59.1 

scenario2 16 15 16 62.2 47.2 56.2 

scenario3 18 19 20 62.7 48.8 67.4 

scenario5 19 19 24 56.9 43.2 64.3 

 

The precise detection of the artifactual external sources, 
like ocular, muscle, heart artifacts, as perfectly shown in Fig. 
1 for heart influences, was obtained by aiding from the external 
physiological channels in the composition of ICA, as can be 
seen in Fig. 2, when comparing between the information 
included within ICA. The ocular movement is cleaned when 
using ICA-MARA+ (all extra channels) and still present when 
using ICA-MARA only, the heart activity such as pulse and 
heartbeat is likewise suppressed when adding ECG. As for the 
muscle noise, at t = 49-52s, influences remain when using 
ICA-MARA without EMG.  

Fig. 3 shows the effective pipeline on eye saccades 

(horizontal and vertical movements with fixations), lateral 

eye movements, blinks and heartbeat influences. Using 

the EMG to detect the talking movements helped clearly 

separating the artifactual source, as seen in Fig. 4. 
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Figure 2. Blink and heart artifacts cleaning. From top to bottom: raw 

data; ICA-MARA, ICA-MARA+ (no EMG), EOGv, EOGh, ECG, 
EMG, PPG and ICA–MARA+; Subject S4, scenario 4, Fpz-Fz. 

 

 
Figure 3. Pipeline cleaning for eye movements and heartbeat 

artifacts. From top to bottom: FPz raw data, EOGv, EOGh, ECG, 
FPz cleaned using ICA-MARA+. Subject S1, scenario 3, FPz.  

 

 
Figure 4. Masseter muscle artifact cleaning. From top to bottom: 

raw data (T4), EMG, ICA-MARA+ (T4). Subject S9, in scenario 3. 

 

Non-physiological electronic noise, as e.g. produced by 
channel pop in Fig. 5 are also cleaned successfully. For double 
banana montage, the artifacts tend to propagate more from the 
frontal EEG channels towards the back channels in the scalp 
due to the derivations’ computation, as seen here for T4-T6, 
T6-O2 derivations. Considering powerline, there are cases 
when CleanLine does not suppress the line noise sufficiently, 
and some power line noise of about 5-10 dB remain, but ICA 
additionally picks up and removes the remaining 
interferences. Further, we mention an example of pipeline 
steps PSNR improvement for subject S4: 1Hz 2%, 50Hz 
1.6%, ICA-MARA 66%, ICA-MARA+ (no EMG) 23.5%, 
ICA-MARA+ 2.3%, ICA-MARA+ 75Hz 2%. For this case, 
adding EMG does not improve much (only 2.3%) since the 
task does not involve serious body muscle movements, but for 
example for S1, scenario5, adding EMG improves PSNR with 
19.5%. 

 
Figure 5. Channel artifacts cleaning. From top to bottom: raw data 
(T4-T6), raw data (T6-O2), ICA-MARA+ (T4-T6), ICA-MARA+ 

(T6-O2). Subject S1, scenario 3, derivations T4-T6, T6-O2.  

 
To ensure the validity of artifactual types, the 4K camera –

synchronized with EEG helped validated part of the artifacts, 
such as significant motion, facial and eye movements, by 
visual inspection with expert clinician.  

VII. DISCUSSION AND CONCLUSION 

This paper proposed a pre-processing methodology to 
minimize the EEG signals artifacts. The study novelty consists 
in: 1) the inclusion of new additional physiological channels 
such as EMG, PPG to capture the subject talking movements 
and its pulse; and 2) the parallel use of two different 
complementary methods to refine the selection of the 
artifactual components, benefiting from the advantages of both 
MARA and ICLabel algorithms. The analysis has been cross 
validated by two approaches used independently, which 
showed that: 1) the signal noise is significantly decreased as 
given by the PSNR metric after applying the cleaning pipeline; 
and 2) the proposed methodology is efficient without 
impacting the EEG data relevance, as the clinical inspection of 
cleaned signals vs. originals proved. The camera inclusion 
helped precisely characterizing the motion artifacts of 
subjects’ activity. Future work consists in the automation of 
the proposed sequence without any parameter setting step and 
manual visual selection, an extended comparison of other 
removal artifacts methods used in the literature. 
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