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Abstract—Image denoising of Low-dose computed tomogra-
phy (LDCT) images has continues to receive attention in the
research community due to ongoing concerns about high-dose
radiation exposure of patients for diagnosis. The use of low
radiation CT image, however, could lead to inaccurate diagnosis
due to the presence of noise. Deep learning techniques are being
integrated into denoising methods to address this problem. In
this paper, a General Adversarial Network (GAN) composed
of boosting fusion of spatial and channel attention modules
is proposed. These modules are embedded in the denoiser to
address the limitations of other GAN-based denoising models
that tend to only focus on the local processing and neglect
the dependencies of creating feature maps with spatial- and
channel- wise image characteristics. This study aims to pre-
serve structural details of LDCT images by applying boosting
attention modules, prevents edge over-smoothing by integrating
perceptual loss via VGG16 pre-trained network, and finally,
improves the computational efficiency by taking advantage of
deep learning techniques and GPU parallel computation.

Index Terms—Medical imaging; Computed tomography; Im-
age denoising; Generative adversarial network; Attention fusion

I. INTRODUCTION

The use of X-ray radiation in computed tomography (CT)
scans is widely used as an effective tool for medical diagno-
sis. However, there is an increasing concern about the health
risks of the patients when exposed to high radiation like
cancer cases due to the induced CT-related X-ray radiation
[1]. The research community aims to minimize the exposure
of the patients by limiting the dosage of radiation. The quality
of the image may be affected due to the presence of noise,
and hence, giving inaccurate diagnosis. A solution would
be enhancing the image quality by applying efficient image
denoising techniques on LDCT images.

Convolutional neural networks (CNN)-based denoising
models have been proven to address the issues of spatial
domain filtering and variational denoising techniques [6]. The
two main types of CNN-based denoising methods include
multi-layer perceptron (ML) and deep learning methods such
as in [1], [2], and [4]. MLP-based models are often composed
of encoders and decoders, which usually follow a feed-
forward artificial neural network. Although this method has
a better interpretability than the optimization algorithms,
the main drawback would be the uncontrollable number
of parameters during the denoising process because of the
fully connected architecture. Deep learning, however, has
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proven to be more effective for image processing such as
AlexNet [7], VGGNet [8] and ResNet [9]. One problem
with deep learning networks is the gradient problem and
also, the insufficient evaluation of denoised images during
the training process. Generative adversarial network (GAN)
- based frameworks utilizes the advantage of GPU’s parallel
architecture which could solve optimization problems men-
tioned. Further, a GAN-based denoising model is usually
composed of a generator, which generates the desired data,
and a discriminator, which is responsible for determining
whether the data is from the training set or the generated
set of data produced from the generator. Different metrics
have been used to avoid the problem of vanishing gradient
which commonly occurs in the generator.

Even though the performance of GANs has shown signif-
icant development in image processing, there are still room
for improvement. In terms of denoising low-dose CT images,
GANs struggle to find efficient ways in retaining image
information especially the fine details in CT images like
blood vessels and small lesions. Park et al. [10] proposed
a fidelity-embedded GAN (f-GAN), which uses maximum a
posteriori (MAP), a statistical image reconstruction technique
for data fitting during noise filtering. Despite of producing
accurate results, a drawback would be the time consumed
during the training process. In this study, GPU parallel
computation would be applied to reduce such computational
cost. Further, Yin et al. [11] proposed an integration of multi-
perceptual loss (MPL) and fidelity loss into GAN in order to
accomplish unpaired image denoising. This framework also
focused on maintaining the high-level semantic features of
the image by applying MPL. This study has shown how
perceptual loss can keep the perceptual features of CT images
using the unsupervised learning method.

The main contributions of the proposed model in this paper
are summarized as follows:

1) Preservation of structural details of LDCT images by
adopting boosting attention modules integrated in GAN
based on the framework in [3] .

2) Prevention of edge over-smoothing by integrating the
use of perceptual loss using VGG16 network, which
was proven to be effective in [5].

3) Improvement of computational efficiency by imple-
menting a deep learning approach instead of an
iterative-based methods.

The remainder of this paper is arranged as follows: Section II
discusses the proposed denoising model architecture; Section
IV presents the quantitative and visual results of the experi-
ment; finally, concluding remarks will be in Section V.
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Fig. 1. The (a) generator (denoiser)and (b) discriminator network structure with boosting attention fusion blocks.

II. METHODS

A. Loss Functions

The proposed model is composed of three main parts: (i)
denoiser; (ii) discriminator and; (iii) feature extractor. Lyu et
al. [3] first introduced the idea of Boosting Attention Fusion
generative adversarial network (BAF-GAN). Their generator
serves as the denoiser – which maps noisy image to a noise
free one. The discriminator follows the basic discriminator
system which is giving scores for the “candidate” image.
One problem mentioned with the model was the iteration
control during the boosting process. Further, they also had a
difficulty with the stability and performance of their network.
They have used pixel loss and structural similarity loss as loss
functions in the discriminator and used VGG-19 for feature
extraction. In this study, we proposed a combination of proper
loss functions which is perceptual loss via the VGG16 pre-
trained network [8] and MSE to be integrated in their model.

Mean squared Error (MSE) is one of the most common
accuracy measurements that calculates the difference
between the LDCT and ground-truth image pairs (xi, yi)

N
i=1

at a pixel level, and it is considered as one of the ”per-pixel
loss functions”. This sums all the absolute errors between
the pixels. Mathematically,

LMSE =
1

N

N∑
i=1

‖yi − xi‖2 (1)

Based from the previous studies, models like CycleGAN
[12] and FFDNET [13] produced an over-smoothing problem
along the edges of the CT images when using only MSE
during the training process. In order to address this issue, the
proposed model will be using the combination of MSE and
perceptual loss, which can be calculated using the VGG16-
pretrained network [8]. Unlike MSE, perceptual loss take

high level features into consideration, which accurately mod-
els the human visual system due to its capability of learning
the features. Similar to Ansari’s DRL-network [5] and Ataei’s
cascaded CNN [4], the feature maps, φi, would be extracted
from the last convolutional layer in blocks i = 1, 2, 3, 4 of
the VGG-16 with size hi ×wi × di which can be expressed
as:

LPL =

N∑
i=1

1

hiwidi

∥∥φi(x)− φi(y)∥∥2 (2)

B. Denoising Model

A typical GAN model is built from a minmax operation
between the generator, G, in which the parameters map
the samples (z) from the noise distribution p(z), and the
discriminator, D, which shows the probability that sample
(x) belongs to true data pdata(x). This structure can be
represented as follows:

min
G

max
D

GAN(D,G) = Ex pdata(x)[logD(x)]

+Ez pz(z)[log (1−D(G(z))](3)

Shown in Figure 1a is the full structure of the generator,
G, acting as the denoiser. In this process, the LDCT image
would have to go through pre-convolutional layer which
composed of convolution, batch normalization (BN) and
ReLU layers in order to extract the shallow features, F 3

SF .
Next, multi-dimensional deep features, FDF , would then
be generated through the series of boosting module groups
(BMG). For each BMG, a stack of n ε {1,..., N} boosting
attention fusion blocks (BAFB), in which the spatial attention
modules (SAM) and channel attention module (CAM) are
being implemented. Finally, for the reconstruction layer,
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Fig. 2. The (a) boosting attention fusion architecture, (b) spatial attention module and (c) channel attention module.

RpostConv , deconvolution + BN + ReLU are applied. Overall,
the denoiser architecture can be expressed as:

xdenoised = G(xLDCT ) (4)
= GpostConv(GBMGs(GpreConv(xLDCT )) (5)

where xdenoised is the output of the entire framework while
xLDCT is the input. Moreover, symmetric skip connections
(SSC) were also applied to address the problem of vanish-
ing gradient that is common in deep learning structures.
This was done between the pre- and post- convolutional
blocks. As for the discriminator, D, six convolution + BN
+ ReLU stacked layers were applied along with spatial- and
channel- attention modules being integrated simultaneously
to have more accurate detection of the images especially
with discriminating channel-wise features. The structure for
the discrimnator is shown in Figure 1b. Structural Similarity
Index (SSIM) would be used for the comparison of the
structural information of the images as in [5].

C. Spatial and Channel Attention Modules

Inside BAFBs from Figure 1, the integration of spatial-
and channel- attention modules are implemented as shown
in Figure 2a. This is due to the fact that simple Conv +
BN + ReLU operation cannot capture the high and low
frequency information of the feature map present during
the pre-convolutional process. SAM (fSAM (·)), Figure 2b,
is responsible for the long-range dependencies while CAM
(fCAM (·)), Figure 2c, would capture the channel-wise fea-
tures. However, these operations tend to bypass each other
and therefore, fusion (ffused(·)) between the two should be
applied. By implementing inner skip connections, the fusion
block can be depicted as the following:

Fup = fupSAM1(fCR1(x))⊕ fCR1(x) (6)
Fdown = fdown

CAM1(fCR1(x))⊕ fCR1(x) (7)
ffuse = Fup©Fdown©fupCAM2(Fup)©fdown

SAM2(Fdown) (8)

where ⊕ denotes element-wise addition and © represents
channel concatenation in this case.

D. Data Preparation and Training Details

Most denoising models require a large dataset of normal-
dose CT (NDCT) and LDCT image pairs, which are not
readily available. This has been one of the difficulties in
applying deep learning to denoising medical images. For
this project, we have simulated LDCT from NDCT images
following the simulation process in [5]. In this experiment,
CT images were contained in DICOM files which include
metadata like the image pixel size and medical information.
One important thing to note when handling DICOM files is
the measure of the radiodensity present in the CT images or
also known as the Hounsfield unit (HU). CT images must be
properly calibrated with the standard HU values first which
corresponds to the specific subtance being observed in the
images. For this experiment, the method for finding HU value
follows the callibration method in [5].

A piglet dataset, obtained from a deceased piglet contain-
ing 900 slices taken with 100KVp, 0.625mm slice thickness,
and using 300mAs for normal dose and 15mAs for low
dose images. The dataset was divided into training set (70%)
and testing dataset (30% ). The training images of size 512
× 512 are subdivided into 40 × 40 overlapping patches
in order to reduce the computational load of the network
and increase the number of training samples. The training
operation of the model maintain the same parameters in [3].
Both the generator and discriminator used Adam optimizer
with learning rate of 0.0002, β1 = 0.01, and β2 = 0.999.
The model was trained for 200 epochs with batch size of 4.
Moreover, the implementation of this model was done with
Tensorflow-Keras API on Windows operating system with
Intel(R) Core(TM)i7 cpu @2.80 GHz processor and NVIDIA
GeForce GTX 1080.

III. EXPERIMENT AND RESULTS

In order to verify the validity of the proposed structure
of the loss function, three modifications of the model have
been done: BAF-GAN with only MSE, BAF-GAN with only
perceptual loss and BAF-GAN with the combination of the
two loss functions as proposed. Further, the quantitative
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(a) LDCT (b) Groundtruth

(c) BAFGAN-MSE (d) modified BM3D [14]

(e) patch-GAN [15] (f) BAFGAN-PL+MSE

Fig. 3. (a) Sample LDCT image from Piglet dataset along with the ground-
truth image (b). The denoised image results from the models: (C) BAF-
GAN with MSE, (d) BM3D, (e) modifies patch-GAN and (f) BAF-GAN
with combination of MSE and perceptual loss.

results of the variation of the models were obtained by
gathering the PSNR and SSIM of the models as summarized
in Table I. The results were also compared with the results
using DRLPS [4], BM3D [14] and self-attentive spectral
normalized Markovian patch-GAN or modified patch-GAN
[15] models. Figure 3 illustrates the visual results of the
denoised images.

TABLE I
THE AVERAGE PSNR AND SSIM OF PIGLET DATASET

Models Piglet
PSNR SSIM

modified BM3D [14] 24.37 0.4461
modified patch-GAN [15] 30.37 0.5435
DRLPS [4] 32.18 0.5700
BAF-GAN-MSE 29.92 0.4987
BAF-GAN-Perceptual Loss 30.84 0.5888
BAF-GAN-MSE + Perceptual Loss 33.64 0.7382

Based from the results, the evaluation of the model with
only MSE as the loss function has displayed over-smoothing
along the edges and slight blurriness as observed in Figure
3(c). Looking at Figure 3(f), adding perceptual loss actually
improved the quality of the denoised image due to the con-
sideration of the differences between the images in various
spaces and dimensions. Based on Table I, the PSNR and
SSIM scores of the proposed model were slightly higher
than the scores obtained by the other three models. The
PSNR and SSIM of the modified patch-GAN are close to
the values obtained by the model with only one loss function

(either MSE or perceptual loss). However, there is still an
apparent noise on the result gathered from the modified
patch-GAN shown in Figure3(e), making the proposed model
better visually.

IV. CONCLUSION

In this experiment, we show that creating feature maps by
implementing the fusion of spatial- and channel- attention
modules can enhance the signal-to-noise ratio of the images.
Moreover, the effectiveness of perceptual loss in preserving
structural details for denoising LDCT images was also ob-
served. Finally, by taking advantage of the GPU’s parallel
architecture via GAN, the model becomes stable during the
training process unlike the traditional iterative reconstruction
LDCT denoising methods.
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