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Abstract— The prevention of human error is an important
task that has already been researched. Previous studies have
shown that EEG signals can predict the occurrence of human
errors. However, high accuracy has not yet been achieved in
a single-trial analysis. This study is aimed to improve the
accuracy of single-trial analysis, and propose a method for
anomaly detection with auto encoder(AE). In the experiment,
we conducted “Press the button(Go)” or “Do nothing(No-Go)”
according to the visual stimulus and analyzed the EEG signal
from -1000 ms to 0 ms when the stimulus was displayed. We
prepared two types of inputs, time series data and frequency
spectrum, and an AE was trained to reconstruct the inputs. We
then calculated the difference between the reconstructed data
and input data and predicted human error by its largeness.
In the prediction using Support Vector Machine (SVM) based
on the frequency spectrum, some over-fitting occurred and the
average accuracy was 43 %. In the prediction using anomaly
detection with frequency spectrum was 53 % and could not
be classified. The time series data was 63 % which improved
the accuracy. A previous study has shown frequency-dependent
features such as -band activity and rhythm, as precursors
of human error. However, in single-trial analysis, we obtained
a higher accuracy by time series data than when by using
the frequency spectrum. However, there was no noticeable
difference between SVM and anomaly detection methods other
than over-fitting. Therefore, in this case, the improvement
in accuracy by the anomaly detection method could not be
confirmed. However, the result suggests that it is more effective
to use the frequency spectrum than the time series data in the
single-trial analysis in the future.

I. INTRODUCTION

Human error is possibly connected to fatal accidents;
thus, preventing human error is a very important task.
Research aimed at predicting the occurring of human error
has been conducted. Brain activity becomes active in a
specific frequency band before human error occurs [1], [2].
However, to realize a realistic prediction, it is necessary to
make a prediction based on single-trial data. Contrastingly,
the accuracy of such predictions is not high [3]. Machine
learning methods are effective in detecting abnormal EEG
signals in the analysis of highly nonlinear EEG [4], [5].
The drawback of machine learning is that the accuracy
depends on the amount of data to be prepared. Therefore,
in this study, we proposed the prediction of human error
by anomaly detection. The biggest advantage of anomaly
detection is that it does not require test data. In general,
human error is rare, and normal data are obtained in most
cases. Therefore, it is possible to prepare a sufficient amount
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of data using anomaly detection. In this study, we interpreted
brain activity that occurs immediately before human error
as an abnormal EEG signal and examined the prediction of
human error by anomaly detection. Specifically, the input
was reconstructed using an AE, and normal (without human
error) brain waves and abnormal (with human error) brain
waves were discriminated from the reconstruction error. We
used the EEG signal of the Go/No-Go task that was used
previously [3].

II. EXPERIMENT

This section describes the details of the data acquisition
experiment conducted in [3].

A. Participants

Seven right-handed men aged 20-23 years participated
in the study. The content of the experiment was explained
to them in advance, and the experiment was conducted
after they filled out a consent form. The experiment was
approved by the Ethics Committee of Nagaoka University
of Technology.

B. Equipment

We measured EEG signals using a digital electroen-
cephalograph (ActiveTwo, Biosemi, Amsterdam, the Nether-
lands) with 64 electrodes attached to the subjects scalps
and using ”fieldtrip”[6] that’s MATLAB toolbox. The data
were digitized at 2048 Hz. The electrodes were placed
in accordance with the international 10-20 system, and a
reference electrode was attached to each earlobe. Artifacts
were monitored using a pair of bipolar electrodes located
below the eyes.

C. Experiment content

Participants were instructed to perform “Go”(press a but-
ton) or “No-Go”(do nothing) in response to a visual stimulus.
Participants were presented the cross in the center on the
display and were instructed to focus on the cross to reduce
eye movement. The visual stimulus with numbers “1-9” was
given on the bottom-left of the screen. Since each number
appears with the same probability, the ratio of Go / No-Go
tasks was 8 vs 1. When the stimulus “5” was presented,
the participant was instructed to enact the “No-Go” task,
and the other stimulus was given for the participant to enact
the “Go” task. The trial wherein the participant pushed the
button in the “Go” task was defined as “hit”, the trial wherein
the participant did nothing in the “No-Go” task was defined
as “correct”, the trial wherein the participant pushed the
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button in the “No-Go” task was defined as “false”. The
experiment of the protocol for a session and an example
of a visual stimulus are shown in Figure 1. Each session
include 151 trials, with each trial construct by 200 ms
“task displayed” and 1500 ms “interval”. The participants
conducted 12 sessions while resting between each session.
The resulting data are shown in TABLE I.

Trial 1 Trial 2 Trial 3 ・・・・ Trial 151

1 session

1

200 ms 1500 ms

Display task Interval

Fig. 1. Experiment protocol and example of visual stimulus.

TABLE I
NUMBER OF DATA FOR EACH CLASS FOR EACH PARTICIPANT

Sub No. Correct False
1 60 152
2 67 137
3 100 113
4 61 151
5 157 55
6 147 65
7 62 150

III. PRE-PROCESSING

This section describes the pre-processing. Conducted pre-
processing is shown in Figure 2.

Artifact removal

Band limitation

Data extraction

FFT

Normalize

Select brain area 
and frequency band

Frequency spectrum

Raw EEG data

Time series data

Fig. 2. Flow chart for pre-processing of each input.

A. Artifact removal

The data acquired from the experiment included artifacts
caused by eye movement and blinking. Artifacts were re-
moved using Electro-OculoGram(EOG) obtained from both
eyes of the participant. Compared to brain activity, the

change in potential caused by eye movements is very large.
Therefore, trials containing signals with an absolute am-
plitude of EOG exceeding 70 µV were excluded from the
analysis, and if the excluded trials exceeded 30 % of the
total, they were also excluded.

B. Band-pass filtering

Convoluted LPF with a cutoff frequency of 30 Hz and
HPF with a cutoff frequency of 1 Hz were used to reject
high wave noise and trends.

C. Data extraction , Fast Fourier Translation and normal-
ization

We set the timing of the visual stimulus to 0 ms, and
extracted the EEG signal from -1000 ms to 0 ms. This
was the time series data used as the input. The calculated
frequency spectrum by FFT and normalized max value
become 1 between 0 and 30 Hz in each channel [3].

D. Selection of brain area and frequency

We used three frequency bands: α band (8-12 Hz), β band
(18-24 Hz) and θ band (3-5 Hz).

We also used the three brain areas that confirmed brain
activation before causing human error [2], [7]: prefrontal,
occipital, and motor areas, as shown in Figure 3 We also
used a one-dimensional vector by combining these areas and
frequencies (TABLE II) and using them as input.
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Fig. 3. EEG electrodes.

TABLE II
COMBINATIONS OF BRAIN AREA AND FREQUENCY BAND.

Feature No. Detail
1 α(8-12 Hz) * occipital(7 Ch.)

2 β(18-24 Hz) * motor area(9 Ch.)
θ(3-5[Hz]) * prefrontal(3[Ch.])

3
α(8-12 Hz) * occipital(7 Ch.)

β(18-24 Hz ) * motor area(9 Ch.)
θ(3-5 Hz) * prefrontal(3 Ch.)

4 α * all of brain area(64 Ch.)
5 β+θ * all of brain area(64 Ch.)
6 α+β+θ * all of brain area(64 Ch.)
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IV. PREDICTION
Prediction is performed by two types of methods SVM

and anomaly detection which was the proposed method.

A. Anomaly detection
For anomaly detection, an AE based on time series data

and an AE based on the frequency spectrum were used. The
configuration for the time series AE is shown in Figure 4,
based on Shallow ConvNet [8] .
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Fig. 4. Time series AE.

The parameters trained using an AE are listed in TABLE
III. If there are multiple items or items indicated by a range,
the value is searched by “optuna”, which is a Python library.

TABLE III
NETWORK PARAMETERS FOR TIME SERIES

Item Detail
Epochs 500

Activation function ReLU
Loss function MSE

Batch size 16
Optimizer Adam, MomentumSGD, rmsprop

Weight decay 1e-10˜1e-3
Adam learning rate 1e-5˜1e-1
SGD learning rate 1e-5˜1e-1
SGD momentum 0.9

The configuration of the frequency spectrum AE is shown
in Figure 5

“m” in Figure 5 represent the number of input dimensions.
The parameters trained with an AE are shown in TABLEIV.

If the correct input data to the trained AE output are
correctly reconstructed, the loss will decrease. In contrast, the
anomaly data for the input output would not be reconstructed
well and thus,the loss will become larger. Using this loss
difference, we predicted human error. The error threshold
will determined by the validation data. Input validation data
to the trained AE and decide the error threshold to maximize
the evaluation.
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Fig. 5. Frequency spectrum AE.

TABLE IV
NETWORK PARAMETERS FOR FREQUENCY SPECTRUM

Item Detail
Epochs 3000

Activation function ReLU
Loss function MSE

Batch size 16
Optimizer MomentumSGD

Hidden layer 1
Learning rate 0.1
Momentum 0.9

Weight decay 0.0005

B. SVM

Prediction by SVM performed based on [3].

C. Accuracy

The geometric mean was used for the evaluation of the
method, and was expressed using the following formula.

Geometric mean = (

n∏
i=1

ai)
1
n = n

√
a1a2 · · · an

The advantage of this method is that it provides a lower
evaluation for over-fitting. As mentioned earlier, human error
is rare, thus the data tend to be biased. We then used
geometric mean to suppress the over-fitting to the class with
a large amount of data. The actual evaluation used 5-fold
cross-validation. When pre-processing was completed, the
data were divided into five for each class. In SVM, cross-
validation was conducted, one of the divided data was used
as test data and the others were used as training data. For
anomaly detection by the AE, we prepared five random
initialized networks, one of the divided data was used as
validation data, another one of the divided data was used as
test data, and the others use as training data. Furthermore,
in AE, one of the divisions of abnormal data is valid data,
and the rest are test data, so there is no abnormal data for
training.

V. RESULT

Feature Nos. 1-6 are listed in TABLEII and are the
frequency spectrum. Feature No. 7 is the time series data.
SVM is only a frequency spectrum prediction, and the AE
contains both frequency spectrum and time series data. The
geometric mean of each method is shown in TABLEV,VI,
and VII, and Figure 6 shows a box plot for each evaluation.

Over-fitting occurs in ”Feature No. 1” prediction by SVM.
In addition, the average of the SVM and AE of the frequency
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TABLE V
GEOMETRIC MEAN FOR SVM

Sub No. Feature No.
1 2 3 4 5 6

1 0.00 0.40 0.47 0.58 0.51 0.51
2 0.00 0.25 0.49 0.46 0.35 0.50
3 0.57 0.65 0.54 0.57 0.55 0.58
4 0.00 0.51 0.52 0.55 0.45 0.54
5 0.00 0.34 0.45 0.49 0.47 0.42
6 0.15 0.33 0.58 0.58 0.49 0.63
7 0.12 0.40 0.53 0.52 0.44 0.52

Mean 0.12 0.41 0.52 0.54 0.47 0.53

TABLE VI
GEOMETRIC MEAN FOR FREQUENCY SPECTRUM AE

Sub No. Feature No.
1 2 3 4 5 6

1 0.55 0.46 0.50 0.58 0.44 0.51
2 0.55 0.56 0.56 0.56 0.57 0.57
3 0.58 0.50 0.56 0.51 0.51 0.51
4 0.50 0.50 0.52 0.55 0.51 0.58
5 0.53 0.55 0.53 0.50 0.51 0.51
6 0.52 0.50 0.49 0.47 0.50 0.48
7 0.53 0.52 0.55 0.56 0.57 0.60

Mean 0.54 0.51 0.53 0.53 0.52 0.54

TABLE VII
GEOMETRIC MEAN FOR TIME SERIES AE

Subject No. Feature No.
7

1 0.67
2 0.54
3 0.69
4 0.67
5 0.47
6 0.67
7 0.68

Mean 0.63

Fig. 6. Box plot of geometric mean.

spectrum is almost the same as the chance level and cannot
be classified. In the time series AE, only Participant 5 was
below the chance level, and it was above 60 % except for
Participant 2 and 5.

VI. DISCUSSION

In SVM using the frequency spectrum, the average was
the chance level, which cannot be classified. On the other
hand, in the anomaly detection using time series data, the
average was 63 % which was possible to classify. Therefore,
it is considered that the time series information is lost when
calculating the frequency spectrum contains information for
detecting errors.

VII. CONCLUSION

In this study, we attempted to predict human error EEG
by anomaly detection. By reconstructing the EEG data using
an auto-encoder learned from the EEG data that does not
include human error, a large reconstruction error occurs when
the input contains human error. In this case, the accuracy
by the anomaly detection method is about the same as the
prediction by the conventional SVM, and the improvement
in accuracy by this method in single-trial analysis could not
be confirmed.
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